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Unregularized and regularized logistic regression

In a Generalized Linear Model, we can express the distribution for y in the canonical
form, which is

f(y; θ) = exp{yθ − b(θ)
a(φ)

+ c(y, φ)},

where θ is called canonical parameter and φ is called the dispersion parameter. And the
log-likelihood is

l(y; θ) =
yθ − b(θ)
a(φ)

+ c(y, φ).

We can obtain the first derivative or score of the log-likelihood w.r.t θ, which is

l′(θ; y) =
y − b′(θ)
a(φ)

,

and the second derivative, which is

l′′(θ; y) = −b
′′(θ)

a(φ)
.

By the known property, E[l′(θ; y)] = 0, it follows that µ = b′(θ). The information
equality shows

var[l′(θ; y)] = E[l′2(θ; y)]− E2[l′(θ; y)] = −E[l′′(θ; y)]

⇒ E[l′2(θ; y)] = −E[l′′(θ; y)],

therefore it follows E[ (y−µ)
2

a2(φ)
] = b′′(θ)

a(φ) . Thus, we have var(y) = E[(y − u)2] = b′′(θ)a(φ).

For the canonical form of the GLM, we have the linear predictor

η = βTx,
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link function
g(µ) = η,

and the obtained fact
µ = b′(θ).

Now we can establish the Fisher Scoring algorithm for the GLM model:

β(t+1) = β(t) + (−E[l′′(β(t))])−1l′(β(t)),

where l′(β(t)) is the score and −E[l′′(β(t))] is the expected information. ∀βj , we have
the chain equation:

∂l

∂βj
= (

∂l

∂θ
)(
∂θ

∂µ
)(
∂µ

∂η
)(
∂η

∂βj
).

And we can derive the expression of them with ease:

∂l

∂θ
= l′(θ; y) =

y − b′(θ)
a(φ)

∂θ

∂µ
=

1
∂µ
∂θ

=
1

b′′(θ)
=

a(φ)

var(y)

∂η

∂βj
= xij , ∀xi

Combining the above results, we have

∂l

∂βj
=

(y − µ)

var(y)
(
∂µ

∂η
)xij , (1)

and by using the property of information equality and the derived results above, we
have

−E[
∂2l

∂βj∂βk
] = E[(

∂l

∂βj
)(
∂l

∂βk
)]

= E[(
y − µ
var(y)

)2(
∂µ

∂η
)2xijxik]

=
1

var(y)
(
∂µ

∂η
)2xijxik. (2)

With equations 1 and 2, we can construct the Fisher scoring algorithm. By rewriting
equation 1 in the vector form, we obtain

∂l

∂β
= XTA(y − µ),

where
X = (x1, . . . , xN )T,
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A = diag{[var(yi)]
−1(

∂µi
∂ηi

)},

y = (y1, . . . , yN ),

and
µ = (µ1, . . . , µN ).

Similarly, we have

−E[
∂2l

∂βj∂βk
] = XTWX,

where

W = diag{wi}

= diag{[var(yi)]
−1(

∂µi
∂ηi

)2}

= diag{[var(yi)(
∂ηi
∂µi

)2]−1}.

Hence, we can construct the Fisher scoring as

β(t+1) = β(t) + {−E[
∂2l

∂βj∂βk
]}−1 ∂l

∂βj
⇒

β(t+1) = β(t) + (XTWX)−1XTA(y − µ). (3)

By rewriting equation 3, we have

β(t+1) = (XTWX)−1[XTWXβ(t) + XTA(y − µ)]. (4)

Since η = βTx, we can write

Xβ = (η1, . . . , ηN )T = η.

And

A = W(
∂η

∂µ
),

where ∂η
∂µ = diag( ∂ηi∂µi

). Hence, we can write equation 4 as

β(t+1) = (XTWX)−1XTWz, (5)

where

z = η + (
∂η

∂µ
)(y − µ) = (z1, . . . , zN )T,

and elementwisely,

zi = ηi + (
∂ηi
∂µi

)(yi − µi), (6)
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and

wi = [var(yi)(
∂ηi
∂µi

)2]−1. (7)

In the logistic regression, letting x0 = 1, then we can write β0 + xT
i β as βTxi. For each

individual trial, we have the canonical form

f(y) = exp{log{( exp(βTx)

1 + exp(βTx)
)y(

1

1 + exp(βTx)
)1−y}

= exp{yβTx− log[1 + exp(βTx)]},

and the log-likelihood is

l = yβTx− log[1 + exp(βTx)].

Hence, we can write the corresponding conponents of the canonical form:

y = y

θ = βTx

a(φ) = 1

b(θ) = log{1 + exp(βTx)}
c(y, φ) = 0.

By easy derivation, we can also obtain the following relations:

E[y] = µ = b′(θ) =
exp(θ)

1 + exp(θ)
= π

var(y) = a(φ)b′′(θ) = b′′(θ) =
exp(θ)

1 + exp(θ)

1

1 + exp(θ)
= π(1− π) = µ(1− µ)

η = g(µ) = logit(π) = log(
π

1− π
) = βTx, where π = Pr(G = 1|x) =

exp(θ)

1 + exp(θ)

Since µ = π,

η = log(
µ

1− µ
) = − log(µ−1 − 1).

Therefore, we can obtain

∂η

∂µ
=

µ−1

1− µ
=

1

(1− µ)µ
=

1

p(x)(1− p(x))
,

where p(x) = π = Pr(G = 1|x). Plugging back to equations 6 and 7, we get

zi = βTx +
y − p(xi)

p(xi)(1− p(xi))
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and

wi = [var(yi)(
∂ηi
∂µi

)2]−1

= [π(1− π)(
1

π(1− π)
)2]−1

= π(1− π)

= p(xi)(1− p(xi)).

Evaluating at the current parameter β̃, we can obtain

zi = β̃
T
xi +

yi − p̃(xi)
p̃(xi)(1− p̃(xi))

as the working variate, and

wi = [var(yi)(
∂ηi
∂µi

)2]−1 = p̃(xi)(1− p̃(xi))

as the weight, which are corresponding to the content in the paper.

From the Equation 15 in the paper, which is the form of lQ, we can have the same
algorithm by constructing the Fisher Scoring, by using the Newton–Raphson method
first. In this case, the iteration can be formed in this way:

β(t+1) = β(t) +
l
′
Q

l
′′
Q

,

and assyptotically, this is equavalent to

β(t+1) = β(t) +
l
′
Q

E[l
′′
Q]
,

which is the Fisher Scoring. A easy rearrange of the terms will lead this equivalanet to
equation 5, by using the given zi and wi in the paper.

Putting all the above together, we have the IRWLS update algorithm to find the MLE
in a logistic regression model:

β(t+1) = (XTWX)−1XTWz,

where z = (z1, . . . , zi, . . . , zN ), and W = diag(wi). Also, theoratically, a cholesky decom-
position of XTWX that is s.p.d to LLT, instead of computing the inverse, can accelerate
the speed, by forming LLTβ(t+1) = XTWz.
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