Distance between two hyperplanes

Xiao (Cosmo) Zhang

September 9, 2014

Suppose we have two parallel hyperplanes $\mathcal{L}_1 : \mathbf{w}^T \mathbf{x} + b_1 = 0, \mathcal{L}_2 : \mathbf{w}^T \mathbf{x} + b_2 = 0$, the distance between them is $d = \frac{|b_1 - b_2|}{\|\mathbf{w}\|}$ proof: There must exist two points $\mathbf{x}_1, \mathbf{x}_2$, while \mathbf{x}_1 is in \mathcal{L}_1 , and \mathbf{x}_2 is in \mathcal{L}_2 . Also,

proof: There must exist two points $\mathbf{x}_1, \mathbf{x}_2$, while \mathbf{x}_1 is in \mathcal{L}_1 , and \mathbf{x}_2 is in \mathcal{L}_2 . Also, a pair of $\mathbf{x}_1, \mathbf{x}_2$ satisfies $\|\mathbf{x}_1 - \mathbf{x}_2\| = |b_1 - b_2|$. let **d** be a vector perpendicular to \mathcal{L}_1 and \mathcal{L}_2 and $\|\mathbf{d}\| = d$. Since $\mathbf{w} \perp \mathcal{L}_1$, let $\mathbf{d} = c\mathbf{w}$.

Then we have

$$((\mathbf{x}_2 - \mathbf{x}_1) - c\mathbf{w})^{\mathrm{T}}c\mathbf{w} = 0 \Longrightarrow \mathbf{w}^{\mathrm{T}}(\mathbf{x}_1 - \mathbf{x}_2) - c\|\mathbf{w}\|^2 = 0$$

Then

$$c = \frac{\mathbf{w}^{\mathrm{T}}(\mathbf{x}_2 - \mathbf{x}_1)}{\|\mathbf{w}\|^2}.$$

Since
$$\mathbf{w}^{\mathrm{T}}(x_2 - x_1) = b_1 - b_2 \Longrightarrow c = \frac{b_1 - b_2}{\|\mathbf{w}\|^2}$$
. Therefore, $d = \|\mathbf{d}\| = |c| \|\mathbf{w}\| = \frac{|b_1 - b_2|}{\|\mathbf{w}\|}$