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ABSTRACT

Zhang, Xiao Ph.D., Purdue University, May 2020. Flexible Structured Prediction in
Natural Language Processing with Partially Annotated Corpora. Major Professor:
Dan Goldwasser.

Structured prediction makes coherent decisions as structured objects to present

the interrelations of these predicted variables. They have been widely used in many

areas, such as bioinformatics, computer vision, speech recognition, and natural lan-

guage processing. Machine Learning with reduced supervision aims to leverage the

laborious and error-prone annotation effects and benefit the low-resource languages.

In this dissertation we study structured prediction with reduced supervision for two

sets of problems, sequence labeling and dependency parsing, both of which are rep-

resentatives of structured prediction problems in NLP. We investigate three different

approaches.

The first approach is learning with modular architecture by task decomposition.

By decomposing the labels into location sub-label and type sub-label, we designed

neural modules to tackle these sub-labels respectively, with an additional module to

infuse the information. The experiments on the benchmark datasets show the modular

architecture outperforms existing models and can make use of partially labeled data

together with fully labeled data to improve on the performance of using fully labeled

data alone.

The second approach builds the neural CRF autoencoder (NCRFAE) model that

combines a discriminative component and a generative component for semi-supervised

sequence labeling. The model has a unified structure of shared parameters, using

different loss functions for labeled and unlabeled data. We developed a variant of the

EM algorithm for optimizing the model with tractable inference. The experiments
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on several languages in the POS tagging task show the model outperforms existing

systems in both supervised and semi-supervised setup.

The third approach builds two models for semi-supervised dependency parsing,

namely local autoencoding parser (LAP) and global autoencoding parser (GAP).

LAP assumes the chain-structured sentence has a latent representation and uses this

representation to construct the dependency tree, while GAP treats the dependency

tree itself as a latent variable. Both models have unified structures for sentence

with and without annotated parse tree. The experiments on several languages show

both parsers can use unlabeled sentences to improve on the performance with labeled

sentences alone, and LAP is faster while GAP outperforms existing models.
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1 INTRODUCTION

Structured prediction makes coherent decisions as structured objects based on given

input(s). Predicting such structured output, rather than a single discrete or real value,

is characterized by the interrelations of these predicted variables. These interrelations

are usually represented as functional dependencies in different domains, which means

the prediction of one output is heavily dependent on the decision of other output(s).

Structured prediction naturally emerges from many real-world problems such that

it has numerous applications. For instance, in bioinformatics, RNA sequences have

chain-like structure and their secondary structures are modeled as tree-like structures.

In computer vision (CV), object recognition on an image depends on the recognition

of other objects on the same image. In speech recognition, articulation in sequential

sentences are constrained by its preceding token(s) and the succeeding one(s) as well.

Particularly in the field this dissertation will focus on, natural language processing

(NLP), structured output is a prominent phenomenon. Several problem arises under

the guise of sequence tagging, as the input data are often sequences that are sentences

of text. Part of Speech (POS), as an example, describes the class label of tokens in

a sentence, expressing the type of each of them. Dependency tree is another form of

structured output in NLP, where sentences are translated into syntactic trees that are

directed acyclic graph (DAG) with a single root. These trees depict the relationships

among the words in the sentence, despite the absolute order of them as a sequence.

Single decisions in both POS and dependency trees rely on other decisions around

them.

Structured prediction is a special area of machine learning, and it faces particular

challenges notoriously known to researchers. Generally speaking, it is difficult to train

structured prediction models, and the inference process lacks scalability. In machine

learning, researchers built intelligent algorithms which are able to generalize from
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previously seen examples. Traditionally, in the case of classification, it categorizes

newly met examples by learning from past examples; while in the case of regression,

it predicts a scalar number from an input based on the historical data. Structured

prediction furthers traditional machine learning to the scenarios of structured out-

put where the predictions are structured objects with coherence within themselves.

Structured prediction can capture the inter relationships among individual predic-

tions within each structured output and ensure the inner constraints satisfied for

each structured object. However, it suffers more from the difficult of training, due to

the non-convexity of the loss functions and the complexity of the models themselves

in most cases. This hardness is compounded as the training data are scarce, caused

by the fact that the annotation of structured output is difficult, and the common su-

pervised learning method for structured prediction models requires large amount of

data. The issue of lacking of annotated data particularly lies in the domain of NLP.

Human annotation for languages is a laborious process and error-prone. Language

understanding and annotation is a high level cognitive task rather than a perceptual

level task: not only linguistic expertise is required for accurate annotation, but also

heavy cognitive load is borne to the annotators, since the task requires knowledge with

correct grammatical structure and/or semantic meanings. This poses an extreme high

cost for hiring and training these annotators, and may result in huge hiring expense.

Additionally, this results in substantially limited quality, quantity and diversity of

the annotated data, which are used as training corpora in NLP. These difficulties

especially aggravate for low-resourced languages, as the availability of well-annotated

corpora is always a concern. The scarcity of annotated corpora demands new methods

that requires less annotation, is able to utilize partially annotated and/or unanno-

tated corpora. Therefore, it makes learning with reduced supervision a desirable way

for structured prediction. In this dissertation, we focus on alternative forms of super-

vision, aiming to reduce the amount of supervision needed for structured prediction

task.
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In NLP, many problems are cast as structured prediction, from syntax to seman-

tics, organized into a hierarchy. At the bottom of the hierarchy lie pure syntactic

problems such as chunking (shallow parsing), POS tagging, dependency parsing, con-

stituent parsing and so on. Higher in the hierarchy, we have shallow semantic tasks

such as NER, SRL, sentiment tagging, co-reference resolution and so on. These spe-

cific tasks are usually disguised as structured prediction problems. In this dissertation

we study sequence labeling including POS tagging, NER and sentiment tagging and

parsing with dependency grammar. Sequence labeling and dependency parsing can be

regarded as representatives in structured prediction in NLP, and techniques to tackle

them may shed light onto other tasks as well. There has been a significant amount of

work in studying structured prediction with reduced supervised for sequence labeling

and parsing, but new techniques are in demand to fulfill the room that exists for

improvement.

1.1 Three Types of Approaches to Structured Prediction with Reduced Supervision

Existing common approaches for structured prediction in NLP with reduced su-

pervision majorly fall into three categories as follows:

1. The multi-task and modular approaches try to build models that handle sev-

eral tasks simultaneously. These approaches usually either aggregate the loss

functions of several structured prediction tasks at the output level, or combine

a language model at the input level.

2. The sequence labeling with latent variables approaches deal with chain-structured

prediction problems by treating the output as latent variables. In a lot of cases,

since the chain-structure is presumed the same as the sentence chain, the latent

variables are the labels of each tokens in the sentence.

3. The tree induction with latent variables approaches advance chain-structured

prediction problems to trees, where the structures are more complex. Due to
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the high complexity of syntactic trees, which are actually DAGs, the latent

variables usually are the edges in the trees.

The multi-task and modular approaches try to solve structured prediction with

reduced supervision by combining multiple NLP tasks together with delicately de-

signed model architectures. However, these approaches have difficulties to deal with

data without any annotation. Sequence labeling with latent variables approaches

try to solve structured prediction with reduced supervision by relying on statistical

models able to handle incomplete data. These approaches are mostly based on gen-

erative model frameworks, particularly chain-structured models such as HMM and

its variants. The tree induction with latent variables approaches expend from chain-

structured representations to more refined and more expressive tree-structured ones

but of higher complexity. Based on probabilistic grammars, these approaches try to

learn the rule probability, which are the parameters of the grammar.

1.2 Related Work

1.2.1 Learning with Multi-task and Modular Architecture

Caruana [1997] first described multi-task in detail. Later, Collobert et al. [2011]

first successfully applied it to NLP by building a model to various NLP tasks. Eriguchi

et al. [2017] and Luong [2016] applied multi-task to machine translation by aggregat-

ing auxiliary tasks at the output level in addition to the target task. On the other

hand, Toshniwal et al. [2017] and Liu et al. [2018] employed low-level auxiliary tasks

at the bottom input level. Modular architectures have been studied in the interaction

of CV and NLP, e.g., Andreas et al. [2016] applied a modular model to both images

and structured NLP knowledge bases, Hu et al. [2017] proposed End-to-End Module

Networks that learn to reason and Yu et al. [2018] described the Modular Attention

Network to capture different type of attentions.
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1.2.2 Sequence Labeling with Latent Variables

Church [1988] and DeRose [1988] first applied HMM to the POS tagging problem.

Merialdo [1994] and Elworthy [1994] trained HMMs from labeled data, and used the

resulting models as initialization for EM on the unlabeled data, which is the prototype

of semi-supervised sequence labeling. Toutanova and Johnson [2007] described a

model for Bayesian semi-supervised POS tagging with the Dirichlet distribution to

encourage sparsity in the parameter space. Method of moments has also been applied

to semi-supervised sequence labeling [Marinho et al., 2016]. Brown cluster and other

word sense resources have been shown to be helpful [Stratos and Collins, 2015b]. In

addition, self-training, co-training, tri-training and cross-view training as a group of

similar techniques are also important roles in semi-supervised sequence labeling [Brill,

1995, Collins and Singer, 1999, Ruder and Plank, 2018, Clark et al., 2018]. Recent

attempts by using neural networks are related to generative models [Tran et al.,

2016, He et al., 2018, Chen et al., 2018]. Autoencoder related techniques are also

important parts of sequence labeling with latent variables approaches [Ammar et al.,

2014, Lin et al., 2015, Cheng et al., 2017]. A recent work applied mutual information

maximization for POS induction [Stratos, 2019].

1.2.3 Tree Induction with Latent Variables

Lari and Young [1990] and Baker [1979] first proposed the inside-outside algorithm

for learning PCFG, to build the constituent trees through corpus. EM algorithm

is popularized for tree induction, e.g., Klein and Manning [2004] proposed the a

variant called DMV (dependency model with valence) to mitigate local traps of the

original EM through a good initialization, while Spitkovsky et al. [2010b] introduced

Viterbi EM as a degenerated EM which achieves better results. Tree induction with

latent variables can benefit from additional resources such as word clusters [Koo

et al., 2008] and statistics of contextual features from larger corpus [Kiperwasser and

Goldberg, 2015]. Proper regularization can help the model learn the grammar of
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the tree towards the correct direction, e.g., the (un)ambiguity regularization [Tu and

Honavar, 2012] and the posterior regularization [Ganchev et al., 2010, Gillenwater

et al., 2010]. Several recent attempts using neural networks have also shown the

improvement, owning to the expressivity of DNN [Jiang et al., 2016, Han et al., 2019,

Shen et al., 2018b,a]. Autoencoder and its variants have shown their strength of

combining the discriminative and the generative component [Cai et al., 2017, Corro

and Titov, 2018].

1.2.4 Limitations

Though there has been a large body of work tackling structured predictions in

NLP with unannotated corpora, most of them either rely on additionally fully anno-

tated data, while the others focus on unsupervised learning, which implies the space

for combining these two to reduce the supervision efforts. Second, most the of the

work either chose to apply the discriminative learning framework or stayed with the

generative learning framework, except very few, neglecting the potential of combining

these two approaches. At last but not the least, though DNN has been prevailed in

machine learning in recent years, very few work investigated the possibility of incor-

porating DNN to reduce supervision with both annotated and unannotated data.

1.2.5 Other Related Areas

Structured Prediction Traditional structured prediction models include global in-

ference based generative model as hidden Markov models (HMM) [Baum and Petrie,

1966] and discriminative model as maximum entropy Markov models (MEMM) [Mc-

callum et al., 2001] and structured perceptrons [Collins, 2002], globally normalized

linear models as Conditional Random Fields (CRF) [Lafferty et al., 2001] and struc-

tured large-margin approaches with kernel method as structured support vector ma-

chine (SSVM) [Tsochantaridis et al., 2004]. Additionally in the SEARN algorithm,

Daumé III et al. [2009] cast learning in structured prediction as a search problem.
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Deep Neural Networks The renovation of DNN in recent years has lead to a huge

leap in several machine learning tasks. Word embeddings [Mikolov et al., 2013] and

its variants [Pennington et al., 2014], unleashed the power of neural networks by in-

troducing low-dimensional dense input representations to replace the traditional high-

dimensional sparse input representation of text data, making DNN suitable models for

NLP. Several recent work have shown promising results when combining structured

prediction models with deep neural networks. A few studies on sequence tagging us-

ing neural networks achieved state-of-the-art performance on the benchmark datasets

[Ma and Hovy, 2016, Mesnil et al., 2015, Lample et al., 2016]. Deep neural network

architectures together with word embeddings have also led to improved performance

in both graph-based and transition-based dependency parsing [Nivre, 2014, Pei et al.,

2015, Chen and Manning, 2014, Dyer et al., 2015, Weiss et al., 2015, Kiperwasser and

Goldberg, 2016]. Andor et al. [2016] showed a globally normalized transition-based

neural network model performs well in several structured prediction tasks, including

part of speech (POS) tagging, dependency parsing and setence compression. Durrett

and Klein [2015] proposed a globally normalized neural CRF model for graph-based

constituent parsing, using neural networks to generate potentials in the model. Wise-

man and Rush [2016] extended Daumé III et al. [2009]’s work by building a sequence-

to-sequence based neural language model with a beam-search training scheme. In

addition, the Adaptive Resonance Theory (ART) [Grossberg, 2013] is also related to

the modular architecture.

Semi-supervised Learning in NLP Self-training is historically regarded as the oldest

approach to semi-supervised learning [Chapelle et al., 2010] and has been widely used

in NLP [Yarowsky, 1995, Riloff et al., 2003]. Nigam et al. [2000] successfully applied a

generative model using EM algorithm on semi-supervised text classification. Several

recent work on semi-supervised learning in NLP include deep generative models for

sentence compression [Miao and Blunsom, 2016], adversarial training for text classi-
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fication [Miyato et al., 2016], latent variable for semantic parsing [Yin et al., 2018]

and recursive autoencoders to predict sentiment distributions [Socher et al., 2011].

Bayesian Statistics in NLP Several modern work has adopted the Bayesian statistics

framework for adding pre-designed prior as inductive bias to help learning. Dirichlet

prior is a popular choice as it can induce strong sparsity, and researchers have applied

it with variational inference [Kurihara and Sato, 2006] or MCMC [Goldwater and

Griffiths, 2007, Johnson et al., 2007]. In addition, the Dirichlet process prior was

proposed by Liang et al. [2007] and Finkel et al. [2007] to produce a smaller grammar

size without fixing a number of nonterminal types in PCFG. A different type of prior

named logistic normal prior has been used to model the correlations between grammar

symbols [Cohen et al., 2008, Cohen and Smith, 2009].

Cognitive Science and Structured Prediction Structured prediction is also related to

language acquisition in psycholinguistics [Pearl et al., 2010], as shown by evidence,

human children learn the words’ order and grammar implicitly [Goldwater, 2006,

Abend et al., 2017, Pearl and Goldwater, 2016]. Further, structured prediction is

also related to Gestalt psychology in cognitive science. In Gestalt psychology, the

Principle of Totality elaborates that the conscious experience must be considered

globally (by taking into account all the physical and mental aspects of the individual

simultaneously) because the nature of the mind demands that each component be

considered as part of a system of dynamic relationships. This principle also explains

the local and global relationship in structured prediction. Gobet [2016] explained

how these rules influence the chunking in languages. In addition, Universal Grammar

(UG) [Chomsky, 2007] and Language Acquisition Device (LAD) [Chomsky, 1965] are

also related to this topic. As we are constructing mathematical model with the same

prototype to learn different languages and to discover a universal grammar set among

all languages, evidence are being provided for UG and LAD.
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1.3 Dissertation Overview

In this dissertation we propose three novel learning approaches with reduced su-

pervision for structured prediction in NLP. Our first approach looks at learning with

partial labels by decomposing complex prediction tasks into sub-tasks in sequence

labeling tasks, including sentiment tagging and named entity recognition [Zhang and

Goldwasser, 2019]. First the labels are decomposed into partial labels–“location” and

“type”–that are easier to annotate. Then we build the models with two modules

which are trained separately by using the partial labels respectively. An additional

module is designed to integrate the two modules to make the final prediction. The

advantage is that the model can be trained using partially annotated data if fully

labeled data is unavailable, since partially annotated data is relative cheaper and

easier to obtain in the real world. Our experiments on the benchmark datasets show

the modular architecture outperforms existing models and can make use of partially

labeled data together with fully labeled data to improve on the performance using

fully labeled data alone.

Modular architecture, however, cannot directly deal with unlabeled data, which is

particularly common in low-resource languages. In statistics, one thought to deal with

incomplete data is to use the Expectation-Maximization (EM) algorithm [Dempster

et al., 1977]. Our second approach expends the EM algorithm by building a model

called neural CRF autoencoder (NCRFAE) that combines a discriminative component

and a generative component, where the discriminative component uses the input to

predict the output and the generative component tries to reconstruct the input based

on the output [Zhang et al., 2017]. This model has a unified structure of shared

parameters but different loss functions for labeled and unlabeled data. We develop

a variant of the EM algorithm to optimize the model with tractable inference. Our

experiments on several languages in the POS tagging task show the model outperforms

existing systems in both supervised and semi-supervised setup.
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Natural languages have more complicated structures than sequences. Our third

approach tries to tackle dependency grammar, in which each sentence is represented

as a dependency tree. We proposed two different models for semi-supervised de-

pendency parsing, namely local autoencoding parser (LAP) and global autoencoding

parser (GAP). LAP assumes the chain-structured sentence has a latent representation

and uses this representation to construct the dependency tree, while GAP treats the

dependency tree itself as a latent variable. Both models have unified structures for

data with and without the annotated parse trees. Our experiments on several lan-

guages show both parsers can use unlabeled sentences to improve on the performance

using labeled sentences alone, and LAP is faster while GAP outperforms existing

models.

1.3.1 Dissertation Organization

We organize the rest of this dissertation as follows.

In Chapter 2, we introduce problem definitions and preliminary concepts.

In Chapter 3, we study learning with partial labels in task decomposition based

on a cognitively inspired neural model with modular architecture.

In Chapter 4, we present our semi-supervised NCRFAE model for sequence label-

ing, along with an innovative algorithm that extends the EM algorithm to deal with

unlabeled data.

In Chapter 5, we extend our semi-supervised learning approach to dependency

parsing, with two models. The first model LAP assumes the sentence has a latent

representation to construct the dependency tree; the second model GAP directly

treats the parse tree as a latent variable and reconstructs the input from the parse

tree.

In Chapter 6, we conclude the dissertation with a summary of contributions and

provide potential future research directions.
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2 PRELIMINARIES

In this chapter, we briefly review dependency graphs and trees, variational autoen-

coders (VAE) and tree CRFs.

2.1 Dependency Graphs and Trees

Definition 2.1.1 Sentence: A sentence of length l including punctuation is a sequence

of tokens denoted by:

s = w0w1 . . . wl. (2.1)

Particularly, w0 = ROOT is an artificial root token inserted at the beginning of the

sentence.

Definition 2.1.2 Relation Types: Define r = r1 . . . rm to be a finite set of possible

dependency relation types that connects any two tokens in a sentence. A relation

type r ∈ r is called an arc label.

Definition 2.1.3 Dependency Graph: A dependency graph g = (v,a) is a labeled

directed graph in the standard graph-theoretic sense and consists of nodes, v, and

arcs, a, such that for sentence s = w0w1 . . . wl and label set r we have the following:

1. v ⊆ w0w1 . . . wl

2. a ⊆ v × r × v

3. if (wi, r, wj) ∈ a then (wi, r
′, wj) /∈ a ∀r′ ̸= r.

The arc set a represents the labeled dependency relations of the particular graph

g. Specifically, an arc (wi, r, wj) represents a dependency relation from head wi to
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dependent wj labeled with relation type r. A dependency graph g is thus a set of

labeled dependency relations between the words of s.

In this dissertation, we focus on unlabeled arc construction so we only consider

arcs but not arc types.

2.2 Variational Autoencoder (VAE)

The typical VAE is a directed graphical model with latent variables, denoted by z.

A generative process first generates latent variable z from the prior distribution π(z)

and the data x is recovered from the distribution Pθ(x|z), parameterized by θ. There

is also an inference model Q(z|x), which is an auxiliary posterior distribution, used

for inferring the most probable latent variable z given the input x. In our scenario,

x is an input sequence and z is a sequence of latent variables correspondingly.

The VAE framework seeks to maximize the complete log-likelihood logP (x) by

marginalizing out the latent variable z. Since direct parameter estimation of logP (x)

is usually intractable, a common solution is to maximize its Evidence Lower Bound

(ELBO).

2.3 Tree Conditional Random Field

The linear chain CRF models an input sequence x = (x1 . . . xl) of length l with

labels y = (y1 . . . yl) with globally normalized probability

P (y|x) = expS(x,y)∑
ỹ∈Y expS(x, ỹ)

,

where Y is the set of all the possible label sequences, and S(x,y) the scoring function,

usually decomposed as emission (
∑l

i=1 s(xi, yi)) and transition (
∑l

i=1 s(yi, yi+1)) for

first-order models.

The tree CRF model generalizes linear chain CRF to trees. In dependency pars-

ing, the tree CRF model tries to resolve which node pairs should be connected with

directed edges, such that the set of edges form a tree. The potentials in the depen-
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dency tree take an exponential form, thus the conditional probability of a parse tree

T , given the input sentence, can be denoted as:

P (T |x) = expS(x, T )
Z(x)

, (2.2)

where Z(x) =
∑
T̃ ∈T(x) expS(x, T̃ ) is the partition function that sums over all pos-

sible valid dependency trees in the set T(x) of the given sentence x.
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3 MODULAR NEURAL ARCHITECTURE FOR STRUCTURED PREDICTION

WITH REDUCED SUPERVISION

In this chapter, we first study the annotation types systematically in sentiment tag-

ging and NER and found the labels can be decomposed into sub-labels, while some

sub-labels are cognitively easier for annotators to recognize and annotate than the

full labels. Modern studies in biological neuroscience and computational neuroscience

have revealed the brain processes information using two different paths: the “where”

and the “what” paths, and we found sentiment tagging and NER can also be decom-

posed by “location” in the sentence and “type” of the chunk.

To model the “where” locator and the “what” recognizer, we designed the compu-

tational model based on this important discovery by proposing two individual modules

for the “where” and “what” tasks separately, and a third module to integrate these

two pieces of information to make the final prediction. In addition, the “where” and

“what” module can be trained separately by using partially labeled data, in which

only the location or the type information is annotated. We also investigated three

different ways of connecting the two modules with the decision module and found one

of these variants has the best performance.

Our experiments on different datasets show the model can make good use of the

information in the partially labeled sentences, together with the fully labeled, to

improve the overall accuracy of sentiment tagging and NER prediction for unseen

text.

3.1 Introduction

Many natural language processing tasks attempt to replicate complex human-level

judgments, which often rely on a composition of several sub-tasks into a unified judg-



15

ment. For example, in the Targeted-Sentiment task [Mitchell et al., 2013], sentiment

polarity scores are assigned to entities depending on the context that they appear in.

Given the sentence “according to a CNN poll, Green Book will win the best movie

award”, the system has to identify both entities, and associate the relevant sentiment

value with each one (neutral with CNN, and positive with Green Book). This task

can be viewed as a combination of two tasks, entity identification, locating contiguous

spans of words corresponding to relevant entities, and sentiment prediction, specific

to each entity based on the context it appears in. Despite the fact that this form

of functional task decomposition is natural for many learning tasks, it is typically

neglected and learning is defined as a monolithic process, combining the tasks into a

single learning problem.

Our goal in this study is to take a step towards modular learning architectures

that exploit the learning tasks’ inner structure, and as a result to simplify the learning

process and to reduce the annotation effort. We introduce a novel task decomposition

approach, learning with partial labels, in which the task output labels decompose

hierarchically, into partial labels capturing different aspects, or sub-tasks, of the final

task. We show that learning with partial labels can help support weakly-supervised

learning when only some of the partial labels are available.

Given the popularity of sequence labeling tasks in NLP, we demonstrate the

strength of this approach over several sentiment analysis tasks, adapted for sequence

prediction. These include target-sentiment prediction [Mitchell et al., 2013], aspect-

sentiment prediction [Pontiki et al., 2016] and subjective text span identification and

polarity prediction [Nakov et al., 2013]. To ensure the broad applicability of our ap-

proach to other problems, we extend the popular LSTM-CRF [Lample et al., 2016]

model that was applied to many sequence labeling tasks∗.

The modular learning process corresponds to a task decomposition, in which the

prediction label, y, is deconstructed into a set of partial labels {y0, .., yk}, each defining

a sub-task, capturing a different aspect of the original task. Intuitively, the individ-
∗We also provide analysis for NER in the apendix
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ual sub-tasks are significantly easier to learn, suggesting that if their dependencies

are modeled correctly when learning the final task, they can constrain the learning

problem, leading to faster convergence and a better overall learning outcome. In

addition, the modular approach helps alleviate the supervision problem, as often pro-

viding full supervision for the overall task is costly, while providing additional partial

labels is significantly cheaper. For example, annotating entity segments syntactically

is considerably easier than determining their associated sentiment, which requires un-

derstanding the nuances of the context they appear in semantically. By exploiting

modularity, the entity segmentation partial labels can be used to help improve that

specific aspect of the overall task.

Our modular task decomposition approach is partially inspired by findings in cog-

nitive neuroscience, namely the two-streams hypothesis, a widely accepted model for

neural processing of cognitive information in vision and hearing [Eysenck and Keane,

2005], suggesting the brain processes information in a modular way, split between

a “where” (dorsal) pathway, specialized for locating objects and a “what” (ventral)

pathway, associated with object representation and recognition [Mishkin et al., 1983,

Geschwind and Galaburda, 1987, Kosslyn, 1987, Rueckl et al., 1989]. Jacobs et al.

[1991] provided a computational perspective, investigating the “what” and “where”

decomposition on a computer vision task. We observe that this task decomposition

naturally fits many NLP tasks and borrow the notation. In the target-sentiment

tasks we address in this study, the segmentation tagging task can be considered as a

“where”-task (i.e., the location of the entities), and the sentiment recognition as the

“what”-task (i.e., the type of the entities).

Our approach is related to multi-task learning [Caruana, 1997], which has been

extensively applied in NLP [Toshniwal et al., 2017, Eriguchi et al., 2017, Collobert

et al., 2011, Luong, 2016, Liu et al., 2018]. However, instead of simply aggregating

the objective functions of several different tasks, we suggest to decompose a single

task into multiple inter-connected sub-tasks and then integrate the representation

learned into a single module for the final decision. We study several modular neural
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architectures, which differ in the way information is shared between tasks, the learn-

ing representation associated with each task and the way the dependency between

decisions is modeled.

Our experiments were designed to answer two questions. First, can the task struc-

ture be exploited to simplify a complex learning task by using a modular approach?

Second, can partial labels be used effectively to reduce the annotation effort?

To answer the first question, we conduct experiments over several sequence pre-

diction tasks, and compare our approach to several recent models for deep structured

prediction [Lample et al., 2016, Ma and Hovy, 2016, Liu et al., 2018], and when avail-

able, previously published results [Mitchell et al., 2013, Zhang et al., 2015, Li and

Lu, 2017, Ma et al., 2018a] We show that modular learning indeed helps simplify the

learning task compared to traditional monolithic approaches. To answer the second

question, we evaluate our model’s ability to leverage partial labels in two ways. First,

by restricting the amount of full labels, we have observed the improvement when

providing increasing amounts of partial labels for only one of the sub-tasks. Second,

we learn the sub-tasks using completely disjoint datasets of partial labels, and show

that the knowledge learned by the sub-task modules can be integrated into the final

decision module using a small amount of full labels. As we demonstrate in our ex-

periments, this approach leads to better performance and increased flexibility, as it

allows us to decouple the learning process and learn the tasks independently.

Our contributions: (1) We provide a general modular framework for sequence learn-

ing tasks. While we focus on sentiment tagging task, the framework is broadly appli-

cable to many other tagging tasks, for example, NER [Carreras et al., 2002, Lample

et al., 2016] and SRL [Zhou and Xu, 2015], to name a few. (2) We introduce a novel

weakly supervised learning approach, learning with partial labels, which exploits the

modular structure to reduce the supervision effort. (3) We evaluated our proposed

model, in both the fully-supervised and weakly supervised scenarios, over several

sentiment analysis tasks.
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3.2 Related Works

From a technical perspective, our task decomposition approach is related to multi-

task learning [Caruana, 1997], specifically, when the tasks share information using a

shared deep representation [Collobert et al., 2011, Luong, 2016]. However, most

prior works aggregate multiple losses on either different pre-defined tasks at the final

layer [Collobert et al., 2011, Luong, 2016], or on a language model at the bottom

level [Liu et al., 2018]. This work suggests to decompose a given task into sub-tasks

whose integration comprise the original task. To the best of our knowledge, Ma

et al. [2018a], focusing on targeted sentiment is the most similar to our approach.

They suggest a joint learning approach, modeling a sequential relationship between

two tasks, entity identification and target sentiment. We take a different approach

viewing each of the model components as a separate module, predicted independently

and then integrated into the final decision module.

Other modular neural architectures were recently studied for tasks combining vi-

sion and language analysis [Andreas et al., 2016, Hu et al., 2017, Yu et al., 2018],

and were tailored for the grounded language setting. To help ensure the broad ap-

plicability of our framework, we provide a general modular network formulation for

sequence labeling tasks by adapting a neural-CRF to capture the task structure. This

family of models, combining structured prediction with deep learning have showed

promising results [Gillick et al., 2015, Lample et al., 2016, Ma and Hovy, 2016, Zhang

et al., 2015, Li and Lu, 2017], by using rich representations through neural models

to generate decision candidates, while utilizing an inference procedure to ensure co-

herent structured decisions. Our main observation is that modular learning can help

alleviate some of the difficulty involved in training these powerful models.

3.3 Architectures for Sequence Prediction

Using neural networks to generate emission potentials in CRFs has benn success-

fully applied in several sequence prediction tasks, such as word segmentation [Chen
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et al., 2017], NER [Ma and Hovy, 2016, Lample et al., 2016], chunking and POS tag-

ging [Liu et al., 2018, Zhang et al., 2017]. A sequence is represented as a sequence of

l tokens: x = [x1, x2, . . . , xl], in which each token corresponds to a label y ∈ Y , where

Y is the set of all possible tags. An inference procedure is designed to find the most

probable sequence y∗ = [y1, y2, . . . , yL] by solving, either exactly or approximately,

the following optimization problem:

y∗ = argmax
y

P (y|x).

Despite the difference in tasks, these models follow a similar general architecture: (1)

Character-level information, such as prefix, suffix and capitalization, is represented

through a character embedding layer using a bi-directional LSTM (Bi-LSTM). (2)

Word-level information is obtained through a word embedding layer. (3) The two

representations are concatenated to represent an input token, used as input to a word-

level Bi-LSTM which generates the emission potentials for a succeeding CRF. (4) The

CRF is used as an inference layer to generate the globally-normalized probability of

possible tag sequences.

3.3.1 CRF Layer

A CRF model describes the probability of predicted labels y, given a sequence x

as input, as

PΛ(y|x) =
eΦ(x,y)

Z
,

where Z =
∑̃
y

eΦ(x,ỹ) is the partition function that marginalize over all possible as-

signments to the predicted labels of the sequence, and Φ(x,y) is the scoring function,

which is defined as:

Φ(x,y) =
∑
t

ϕ(x, yt) + ψ(yt−1, yt).

The partition function Z can be computed efficiently via the forward-backward al-

gorithm. The term ϕ(x, yt) corresponds to the emission score of a particular tag yt
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at position t in the sequence, and ψ(yt−1, yt) represents the transition score from the

tag at position t − 1 to the tag at position t. In the Neural CRF model, ϕ(x, yt) is

generated by the aforementioned Bi-LSTM while ψ(yt−1, yt) by a transition matrix.

3.4 Functional Decomposition of Composite Tasks

To accommodate our task decomposition approach, we first define the notion of

partial labels, and then discuss different neural architectures capturing the depen-

dencies between the modules trained over the different partial labels.

Partial Labels and Task Decomposition: Given a learning task, defined over an

output space y ∈ Y , where Y is the set of all possible tags, each specific label y is

decomposed into a set of partial labels, {y0, .., yk}. We refer to y as the full label.

According to this definition, a specific assignment to all k partial labels defines a

single full label. Note the difference between partially labeled data [Cour et al., 2011],

in which instances can have more than a single full label, and our setup in which the

labels are partial.

In all our experiments, the partial labels refer to two sub-tasks, (1) a segmenta-

tion task, identifying Beginning, Inside and Outside of an entity or aspect. (2) one

or more type recognition tasks, recognizing the aspect type and/or the sentiment

polarity associated with it. Hence, a tag yt at location t is divided into ysegt and ytypt ,

corresponding to segmentation and type (sentiment type here) respectively. Fig. 3.1

provides an example of the target-sentiment task. Note that the sentiment labels do

not capture segmentation information.

Modular Learning architectures: We propose three different models, in which in-

formation from the partial labels can be used. All the models have similar modules

types, corresponding to the segmentation and type sub-tasks, and the decision module

for predicting the final task. The modules are trained over the partial segmentation

(yseg) and type ( ytyp) labels, and the full label y information, respectively.
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Figure 3.1.: This figure shows a target-sentiment decomposition example with seg-

mentation and sentiment.

These three models differ in the way they share information. Model 1, denoted

Twofold Modular, LSTM-CRF-T, is similar in spirit to multi-task learning [Collobert

et al., 2011] with three separate modules. Model 2, denoted Twofold modular Infusion,

(LSTM-CRF-TI) and Model 3, denoted Twofold modular Infusion with guided gating,

(LSTM-CRF-TI(g)) both infuse information flow from two sub-task modules into the

decision module. The difference is whether the infusion is direct or going through a

guided gating mechanism. The three models are depicted in Fig. 3.2 and described

in details in the following paragraphs. In all of these models, the underlying neural

architectures are used for the emission potentials when the CRF inference layers are

applied on top.

3.4.1 Twofold Modular Model

The twofold modular model enhances the original monolithic model by using

multi-task learning with shared underlying representations. The segmentation mod-

ule and the type module are trained jointly with the decision module, and all the

modules share information by using the same embedding level representation, as

shown in Figure 3.2a. Since the information above the embedding level is indepen-

dent, the LSTM layers in the different modules do not share information, so we refer

to these layers of each module as private.
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SEG TYP
DES

Embeddings

(a) LSTM-CRF-T

SEG TYP
DES

Embeddings

(b) LSTM-CRF-TI
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σ σ× ×

Embeddings

(c) LSTM-CRF-TI (G)

Figure 3.2.: This figure shows three modular models for task decomposition. In all

of them, blue blocks are the segmentation modules, detecting entity location and

segmentation, and yellow blocks are the type modules, recognizing the entity type or

sentiment polarity. Green blocks are the final decision modules, integrating all the

decisions. (G) refers to “Guided Gating”.

The segmentation module predicts the segmentation BIO labels at position t of the

sequence by using the representations extracted from its private word level bi-LSTM

(denoted as Hseg) as emission for a individual CRF:

hseg
t = Hseg(et,

−→
h seg

t−1,
−→
h seg

t+1),

ϕ(x, ysegt ) = W seg⊺hseg
t + bseg,

where W seg and bseg denote the parameters of the segmentation module emission

layer, and Hseg denotes its private LSTM layer.

This formulation allows the model to forge the segmentation path privately through

back-propagation by providing the segmentation information yseg individually, in ad-

dition to the complete tag information y.

The type module, using ytyp, is constructed in a similar way. By using represen-

tations from its own private LSTM layers, the type module predicts the sentiment

(entity) type at position t of the sequence :

htyp
t = Htyp(et,

−→
h typ

t−1,
−→
h typ

t+1),

ϕ(x, ytypt ) = W typ⊺htyp
t + btyp.
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Both the segmentation information yseg and the type information ytyp are provided

together with the complete tag sequence y, enabling the model to learn segmentation

and type recognition simultaneously using two different paths. Also, the decomposed

tags naturally augment more training data to the model, avoiding over-fitting due to

more complicated structure. The shared representation beneath the private LSTMs

layers are updated via the back-propagated errors from all the three modules.

3.4.2 Two-fold Modular Infusion Model

The twofold modular infusion model provides a stronger connection between the

functionalities of the two sub-tasks modules and the final decision module, differing

significantly from multi-task leaning.

In this model, instead of separating the pathways from the decision module as in

the previous twofold modular model, the segmentation and the type representation

are used as input to the final decision module. The model structure is shown in Figure

3.2b, and can be described formally as:

isegt = W seg⊺hseg
t + bseg,

itypt = W typ⊺htyp
t + btyp,

st = W ⊺[ht; i
seg
t ; itypt ] + b,

where st is the shared final emission potential to the CRF layer in the decision module,

and ; is the concatenation operator, combining the representation from the decision

module and that from the type module and the segmentation module.

The term “Infusion” used for naming this module is intended to indicate that both

modules actively participate in the final decision process, rather than merely form two

independent paths as in the twofold modular model. This formulation provides an

alternative way of integrating the auxiliary sub-tasks back into the major task in the

neural structure to help improve learning.
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3.4.3 Guided Gating Infusion

In the previous section we described a way of infusing information from other

modules naively by simply concatenating them. But intuitively, the hidden repre-

sentation from the decision module plays an important role as it is directly related

to the final task we are interested in. To effectively use the information from other

modules forming sub-tasks, we design a gating mechanism to dynamically control the

amount of information flowing from other modules by infusing the expedient part

while excluding the irrelevant part, as shown in Figure 3.2c. This gating mechanism

uses the information from the decision module to guide the information from other

modules, thus we name it as guided gating infusion, which we describe formally as

follows:

isegt =σ(W1ht + b1)⊗ (W seg⊺hseg
t + bseg),

itypt =σ(W2ht + b2)⊗ (W typ⊺htyp
t + btyp),

st =W ⊺[ht; i
seg
t ; itypt ] + b,

where σ is the logistic sigmoid function and ⊗ is the element-wise multiplication. The

{W1,W2, b1, b2} are the parameters of these gates for guiding, which are updated

during the training to maximize the overall sequence labeling performance.

3.5 Learning with Full and Partial Labels

Our objective naturally rises from the model we described in the text. Further-

more, as our experiments show, it is easy to generalize this objective, to a “semi-

supervised” setting, in which the model has access to only a few fully labeled exam-

ples and additional partially labeled examples. E.g., if only segmentation is annotated
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but the type information is missing. The loss function is a linear combination of the

negative log probability of each sub-tasks, together with the decision module:

J =−
N∑
i

logP (yi|xi) + α logP (yseg(i)|x(i))

+ β logP (ytyp(i)|x(i)), (3.1)

where N is the number of examples in the training set, yseg and ytyp are the decom-

posed segmentation and type tags corresponding to the two sub-task modules, and

α and β are the hyper-parameters controlling the importance of the two modules’

contributions respectively.

If the training example is fully labeled with both segmentation and type anno-

tated, training is straightforward; if the training example is partially labeled, e.g.,

only with segmentation but without type, we can set the log probability of the type

module and the decision module to 0 and only train the segmentation module. This

formulation provides extra flexibility of using partially annotated corpus together

with fully annotated to improve the overall performance.

3.6 Experimental Evaluation

Our experimental evaluation is designed to evaluate the two key aspects of our

model:

Q1: Can the modular architecture alleviate the difficulty of learning the final task?

To answer this question, we compare our modular architecture to the traditional

neural-CRF model and several recent competitive models for sequence labeling com-

bining inference and deep learning. The results are summarized in Tables 3.1-3.3.

Q2: Can partial labels be used effectively as a new form of weak-supervision? To

answer this question we compared the performance of the model when trained using

disjoint sets of partial and full labels. The results are summarized in Figures 3.3-3.5.
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3.6.1 Experimental Settings

Datasets

We evaluated our models over three different sentiment tagging tasks adapted for

sequence prediction. We also included additional results for multilingual NER in the

Appendix for reference.

Targeted Sentiment Datasets We evaluated our models on the targeted sentiment

datasets released by Mitchell et al. [2013], which consists of entity and sentiment an-

notations on both English and Spanish tweets. Similar to previous studies [Mitchell

et al., 2013, Zhang et al., 2015, Li and Lu, 2017], our task focuses on people and orga-

nizations (collapsed into volitional named entities tags) and the sentiment associated

with their description in tweets. After this processing, the labels of each tweets are

composed of both segmentation (entity spans) and types (sentiment tags).

We used the original 10-fold cross validation splits to calculate averaged F1 score,

using 10% of the training set for development. We used the same metrics in Zhang

et al. [2015]’s and Li and Lu [2017]’s studies for a fair comparison.

Aspect Based Sentiment Analysis Datasets We used the Restaurants dataset pro-

vided by SemEval 2016 Task 5 subtask 1, consisting of opinion target (aspect) expres-

sion segmentation, aspect classification and matching sentiment prediction. In the

original task definition, the three tasks were designed as a pipeline, and assumed gold

aspect labels when predicting the matching sentiment labels. Instead, our model deals

with the challenging end-to-end setting by casting the problem as a sequence labeling

task, labeling each aspect segment with the aspect label and sentiment polarity†.

Subjective Polarity Disambiguation Datasets We adapted the SemEval 2013 Task

2 subtask A as another task to evaluate our model. In this task, the system is given

a marked phrase inside a longer text, and is asked to label its polarity. Unlike the
†using only the subset of the data containing sequence information
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original task, we did not assume the sequence is known, resulting in two decisions,

identifying subjective expressions (i.e., a segmentation task) and labeling their polar-

ity, which can be modeled jointly as a sequence labeling task.

Input Representation and Model Architecture

Following previous studies [Ma and Hovy, 2016, Liu et al., 2018] showing that

the word embedding choice can significantly influence performance, we used the pre-

trained GloVe 100 dimension Twitter embeddings only for all tasks in the main text.

All the words not contained in these embeddings (OOV, out-of-vocabulary words)

are treated as an “unknown” word. Our models were deployed with minimal hyper

parameters tuning, and can be briefly summarized as: the character embeddings has

dimension 30, the hidden layer dimension of the character level LSTM is 25, and

the hidden layer of the word level LSTM has dimension 300. Similar to Liu et al.

[2018], we also applied highway networks [Srivastava et al., 2015] from the character

level LSTM to the word level LSTM. In our pilot study, we shrank the number of

parameters in our modular architectures to around one third such that the total

number of parameter is similar as that in the LSTM-CRF model, but we did not

observe a significant performance change so we kept them as denoted.

Learning

We used BIOES tagging scheme but only during the training and convert them

back to BIO2 for evaluation for all tasks‡. Our model was implemented using py-

torch [Paszke et al., 2019]. To help improve performance we parallelized the forward

algorithm and the Viterbi algorithm on the GPU. All the experiments were run on

NVIDIA GPUs. We used the Stochastic Gradient Descent (SGD) optimization of
‡Using BIOES improves model complexity in Training, as suggested in previous studies. But to
make a fair comparison to most previous work, who used BIO2 for evaluation, we converted labels
to BIO2 system in the testing stage. (To be clear, using BIOES in the testing actually yields higher
f1 scores in the testing stage, which some previous studies used unfairly)
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batch size 10, with a momentum 0.9 to update the model parameters, with the learn-

ing rate 0.01, the decay rate 0.05; The learning rate decays over epochs by η/(1+e∗ρ),

where η is the learning rate, e is the epoch number, and ρ is the decay rate. We used

gradient clip to force the absolute value of the gradient to be less than 5.0. We used

early-stop to prevent over-fitting, with a patience of 30 and at least 120 epochs. In

addition to dropout, we used Adversarial Training (AT) [Goodfellow et al., 2014],

to regularize our model as the parameter numbers increase with modules. AT im-

proves robustness to small worst-case perturbations by computing the gradients of

a loss function w.r.t. the input. In this study, α and β in Eq. 3.1 are both set to

1.0, and we leave other tuning choices for future investigation. The source code and

experimental setup are available online§.

3.6.2 Q1: Monolithic vs. Modular Learning

Our first set of results are designed to compare our modular learning models,

utilize partial labels decomposition, with traditional monolithic models, that learn

directly over the full labels. In all three tasks, we compare with strong sequence pre-

diction models, including LSTM-CRF [Lample et al., 2016], which is directly equiva-

lent to our baseline model (i.e., final task decision without the modules), and LSTM-

CNN-CRF [Ma and Hovy, 2016] and LSTM-CRF-LM [Liu et al., 2018] which use a

richer latent representation for scoring the emission potentials.

Targeted Sentiment task The results are summarized in Tab. 3.1. We also compared

our models with recently published state-of-the-art models on these datasets. To help

ensure a fair comparison with Ma et al. [2018a] which does not use inference, we also

included the results of our model without the CRF layer (denoted LSTM-Ti(g)). All

of our models beat the state-of-the-art results by a large margin.
§https://github.com/cosmozhang/Modular_Neural_CRF

https://github.com/cosmozhang/Modular_Neural_CRF
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Table 3.1.: This table compares our models with the competing models on the tar-

geted sentiment task. The results are on the full prediction of both segmentation and

sentiment.

System Architecture Eng. Spa.

Zhang et al. [2015]

Pipeline 40.06 43.04

Joint 39.67 43.02

Collapsed 38.36 40.00

Li and Lu [2017]

SS 40.11 42.75

+embeddings 43.55 44.13

+POS tags 42.21 42.89

+semiMarkov 40.94 42.14

Ma et al. [2018a] HMBi-GRU 42.87 45.61

baseline LSTM-CRF 49.89 48.84

This work

LSTM-Ti(g) 45.84 46.59

LSTM-CRF-T 51.34 49.47

LSTM-CRF-Ti 51.64 49.74

LSTM-CRF-Ti(g) 52.15 50.50

Aspect Based Sentiment We evaluated our models on two tasks: The first uses two

modules, for identifying the position of the aspect in the text (i.e., chunking) and

the aspect category prediction (denoted E+A). The second adds a third module that

predicts the sentiment polarity associated with the aspect (denoted E+A+S). I.e.,

for a given sentence, label its entity span, the aspect category of the entity and the

sentiment polarity of the entity at the same time ¶. The results over four languages

are summarized in Tab. 3.2. In all cases, our modular approach outperforms all

monolithic approaches.
¶We adjusted our model for the E+A+S task.
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Table 3.2.: This table compares our models with recent results on the Aspect Senti-

ment datasets.

Models
English Spanish Dutch Russian

E+A E+A+S E+A E+A+S E+A E+A+S E+A E+A+S

LSTM-CNN-CRF 58.73 44.20 64.32 50.34 51.62 36.88 58.88 38.13

LSTM-CRF-LM 62.27 45.04 63.63 50.15 51.78 34.77 62.18 38.80

LSTM-CRF 59.11 48.67 62.98 52.10 51.35 37.30 63.41 42.47

LSTM-CRF-T 60.87 49.59 64.24 52.33 52.79 37.61 64.72 43.01

LSTM-CRF-TI 63.11 50.19 64.40 52.85 53.05 38.07 64.98 44.03

LSTM-CRF-TI(g) 64.74 51.24 66.13 53.47 53.63 38.65 65.64 45.65

Subjective Phrase Identification and Classification In this task, tweets are anno-

tated with sentiment phrases. As in the original SemEval task, it is tested in two

settings, in-domain, where the test data also consists of tweets, and out-of-domain,

where the test set consists of SMS text messages. We present the experimental results

on these datasets in Table 3.3.

Table 3.3.: This table compares our models with competing models on the subjective

sentiment task.

Models Tweets SMS

LSTM-CNN-CRF 35.82 23.23

LSTM-CRF-LM 35.67 23.25

LSTM-CRF 34.15 26.28

LSTM-CRF-T 35.37 27.11

LSTM-CRF-Ti 36.52 28.05

LSTM-CRF-Ti(g) 37.71 29.24
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3.6.3 Q2: Partial Labels as Weak Supervision

Our modular architecture is a natural fit for learning with partial labels. Since the

modular architecture decomposes the final task into sub-tasks, the absence of certain

partial labels is permitted. Under this scenario, only the module corresponding to

the available partial labels will be trained while the other parts of the model remain

fixed.

This property can be exploited to reduce the supervision effort by defining semi-

supervised learning protocols that use partial-labels when the full labels are not avail-

able, or too costly to obtain. E.g., in the target sentiment task, segmentation labels

are significantly easier to annotate.

To demonstrate this property we conducted two sets of experiments. The first

investigates how the decision module can effectively integrate the knowledge inde-

pendently learned by sub-tasks modules using different partial labels. We quantify

this ability by providing varying amounts of full labels to support the integration

process. The second studies the traditional semi-supervised setting, where we only

have a handful of full labels, but we have a larger amount of partial labels.

Modular Knowledge Integration The modular architecture allows us to train each

model using data obtained separately for each task, and only use a handful of examples

annotated for the final task in order to integrate the knowledge learned by each module

into a unified decision. We simulated these settings by dividing the training data into

three folds. We associated each one of the first two folds with the two sub-task

modules. Each one of the these folds only included the partial labels relevant for that

sub-task. We then used gradually increasing amounts of the third fold, consisting of

the full labels, for training the decision module.

Fig. 3.3 describes the outcome for targeted sentiment task, comparing a non-

modular model using only the full labels, with the modular approach, which uses

the full labels for knowledge integration. Results show that even when very little full

data is available the modular approach can result in significantly improve. Additional
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results show the same pattern for subjective phrase identification and classification

are included in the Appendix.
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Figure 3.3.: This figure shows modular knowledge integration experimental results

on the Targeted Sentiment Datasets. The x-axis is the amount of percentage of the

third fold of full labels. The “non-modularized” means we only provide fully labeled

data from the third fold.

Learning with Partially Labeled Data Partially-labeled data can be cheaper and

easier to obtain, especially for low-resource languages. In this set of experiments, we

model these settings over the target-sentiment task. The results are summarized in

Fig. 3.4. We fixed the amount of full labels to 20% of the training set, and gradually

increased the amount of partially labeled data. We studied adding segmentation and

type separately. After the model is trained in this routine, it was tested on predicting

the full labels jointly on the test set.

Domain Transfer with Partially Labeled Data In our final analysis we considered

a novel domain-adaptation setup, where we have a small amount of fully labeled in-

domain data from aspect sentiment and more out-of-domain data from target senti-
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Figure 3.4.: The fully labeled data were fixed to 20% of the whole training set, and

data with only segmentation information (Magenta), or with only type information

(Orange) were gradually added. Then the model was tested on the full prediction

test. The LSTM-CRF model can only use fully labeled data as it does not decompose

the task.

ment. However unlike the traditional domain-adaptation settings, the out-of-domain

data is labeled for a different task, and only shares one module with the original task.

In our experiments we fixed 20% of the fully labeled data for the aspect sentiment

task, and gradually added out-of-domain data, consisting of partial sentiment labels

from the target sentiment task. Our model successfully utilized the out-of-domain

data to improve the performance on the in-domain task. The results are shown on

Fig 3.5.

3.7 Conclusion

We present and study several modular neural architectures designed for a novel

learning scenario: learning from partial labels. We experiment with several sentiment

tagging tasks. Our models, inspired by cognitive neuroscience findings and multi-

task learning, suggest a functional decomposition of the original task into simpler
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Figure 3.5.: This figure shows domain transfer experimental results with fixed 20%

in-domain data from aspect sentiment and various amounts of out-of-domain data

from target sentiment, shown on the x-axis.

sub-tasks. We evaluated different methods for sharing information and integrating

the modules into the final decision, such that a better model can be learned, while

converging faster‖. As our experiments show, modular learning can be used with weak

supervision, using examples annotated with partial labels only.

The modular approach also provides interesting directions for future research,

focusing on alleviating the supervision bottleneck by using large amount of partially

labeled data that are cheaper and easy to obtain, together with only a handful amount

of annotated data, a scenario especially suitable for low-resource languages.

‖Results of convergence analysis are provided in the Appendix.
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4 NEURAL CONDITIONAL RANDOM FIELDS AUTOENCODER

In the real world, most of the data are not annotated at all. Though partially labeled

data is cheaper and easier to obtain than fully labeled data, in a lot scenarios even

partially labeled data are scarce, especially when dealing with low-resource languages.

The best hope is that we can directly make use of those unannotated data in the

learning process. From the perspective of statistical learning, treating those missing

labels of the unannotated data as latent variables sheds a light on mitigating this

difficulty.

In this chapter, we introduce a novel model–neural CRF autoencoder (NCRFAE)–

for semi-supervised sequence labeling, which consists of a discriminative component

built upon a CRF model enhanced by DNN and a generative component aiming

to reconstruct the input from the prediction. The discriminative component and

the generative component complement and constrain each other rather than merely

increase the model complexity. The model has a unified structure with shared pa-

rameters while using different loss functions for labeled and unlabeled data. Along

with the NCRFAE model, we propose a tractable algorithm that extends the Baum-

Welsh algorithm [Elworthy, 1994] which is regarded as a sequential version of EM

algorithm. This algorithm deals with the missing labels as latent variables and pro-

vides an efficient way to calculate their posteriors under a Maximum a Posterior

(MAP) framework. By decoupling the parameters in the discriminative encoder and

the generative decoder, the model is optimized to escape bad local minimums.

We ran extensive experiments on different languages and found empirically that

our model can exploit the hidden information inside the unlabeled sentences, to im-

prove the overall accuracy on using labeled data alone in POS tagging task, consis-

tently across different languages. Additionally, under the supervised setup, our model

outperforms existing methods.
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4.1 Introduction

The recent renaissance of deep learning has led to significant strides forward in

several AI fields. In Natural Language Processing (NLP), characterized by highly

structured tasks, promising results have been obtained by models that combine deep

learning methods with traditional structured learning algorithms [Chen and Manning,

2014, Durrett and Klein, 2015, Andor et al., 2016, Wiseman and Rush, 2016]. These

models combine the strengths of neural models, that can score local decisions using a

rich non-linear representation, with efficient inference procedures used to combine the

local decisions into a coherent global decision. Among these models, neural variants

of the Conditional Random Fields (CRF) model [Lafferty et al., 2001] are especially

popular. By replacing the linear potentials with non-linear potential generated by

using neural networks these models are able to improve performance on several struc-

tured prediction tasks [Andor et al., 2016, Peng and Dredze, 2016, Lample et al.,

2016, Ma and Hovy, 2016, Durrett and Klein, 2015].

Despite their promise, wider adoption of these algorithms for new structured pre-

diction tasks can be difficult. Neural networks are notoriously susceptible to over-

fitting unless large amounts of training data are available. This problem is exacer-

bated in the structured settings, as accounting for the dependencies between decisions

requires even more data. Providing it through manual annotation is often a difficult

and labor-intensive task.

In this study we tackle this problem, by proposing an end-to-end neural CRF au-

toencoder (NCRFAE) model for semi-supervised learning on sequence labeling prob-

lems.

An autoencoder is a special type of neural networks, modeling the conditional

probability P (X̂|X), where X is the original input to the model and X̂ is the re-

constructed input [Hinton and Zemel, 1994]. Autoencoders consist of two parts, an

encoder projecting the input to a hidden space, and a decoder reconstructing the

input from it.
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Traditionally, autoencoders are used for generating a compressed representation

of the input by projecting it into a dense low dimensional space. In our setting the

hidden space consists of discrete variables that comprise the output structure. These

generalized settings are described in Figure 4.1a. By definition, it is easy to see that

the encoder (lower half in Figure 4.1a) can be modeled by a discriminative model

describing P (Y |X) directly, while the decoder (upper half in Figure 4.1a) naturally

fits as a generative model, describing P (X̂|Y ), where Y is the label. In our model,

illustrated in Figure 4.1b, the encoder is a CRF model with neural networks as its

potential generators, while the decoder is a generative model, trying to reconstruct

the input.

Our model carries the merit of autoencoders, which can exploit valuable infor-

mation from unlabeled data. Recent works [Ammar et al., 2014, Lin et al., 2015]

suggested using an autoencoder with a CRF model as an encoder in an unsupervised

setting. We significantly expand on these works and suggest the following contribu-

tions:

1. We propose a unified model seamlessly accommodating both unlabeled and

labeled data. While past work focused on unsupervised structured prediction, ne-

glecting the discriminative power of such models, our model easily supports learning

in both fully supervised and semi-supervised settings. Accompanying with the model,

we additionally developed a variation of the Expectation-Maximization (EM) algo-

rithm, used for optimizing the encoder and the decoder of our model simultaneously.

2. We increase the expressivity of the traditional CRF autoencoder model using

neural networks as the potential extractors, thus avoiding the heavy feature engineer-

ing necessary in previous works.

3. We demonstrate the advantages of our model empirically, by conducting ex-

periments on the well-known Part of Speech (POS) tagging problem over 8 different

languages, including low-resource languages. In the supervised setting, our NCRFAE

outperformed the highly optimized NCRF. In the semi-supervised setting, our model

was able to successfully utilize unlabeled data, improving on the performance using
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only the labeled data alone, and outperforming competing semi-supervised learning

algorithms.

Furthermore, our newly proposed algorithm is directly applicable to other se-

quential learning tasks in NLP, and can be easily adapted to other structured tasks

such as dependency parsing or constituent parsing by replacing the forward-backward

algorithm with the inside-outside algorithm. All of these tasks can benefit from semi-

supervised learning algorithms.∗

4.2 Related Work

Neural networks have been successfully applied to many NLP tasks, including tag-

ging [Ma and Hovy, 2016, Mesnil et al., 2015, Lample et al., 2016], parsing [Chen and

Manning, 2014], text generation [Sutskever et al., 2011], machine translation [Bah-

danau et al., 2015], sentiment analysis [Kim, 2014] and question answering [Andreas

et al., 2016]. Most relevant to this work are structured prediction models capturing

dependencies between decisions, either by modeling the dependencies between the

hidden representations of connected decisions using RNN or LSTM [Vaswani et al.,

2016, Katiyar and Cardie, 2016], by explicitly modeling the structural dependencies

between output predictions [Durrett and Klein, 2015, Lample et al., 2016, Andor

et al., 2016], or by combining the two approaches [Socher et al., 2013, Wiseman and

Rush, 2016].

In contrast to supervised latent variable models, such as the Hidden Conditional

Random Fields in [Quattoni et al., 2007], which utilize additional latent variables to

infer for supervised structure prediction, we do not presume any additional latent

variables in our NCRFAE model in both supervised and semi-supervised setting.

The difficulty of providing sufficient supervision has motivated work on semi-

supervised and unsupervised learning for many of these tasks [McClosky et al., 2006,

Spitkovsky et al., 2010a, Subramanya et al., 2010, Stratos and Collins, 2015a, Marinho
∗Our code and experimental set up will be available at https://github.com/cosmozhang/NCRFAE
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et al., 2016, Tran et al., 2016], including several that also used autoencoders [Ammar

et al., 2014, Lin et al., 2015, Miao and Blunsom, 2016, Kociský et al., 2016, Cheng

et al., 2017]. In this paper we expand on these works, and suggest a neural CRF

autoencoder, that can leverage both labeled and unlabeled data.

4.3 Neural CRF Autoencoder

In semi-supervised learning the model needs to utilize both labeled and unlabeled

data. Autoencoders offer a convenient way to deal with both types of data in a unified

fashion.

A generalized autoencoder (Figure 4.1a) tries to reconstruct the input X̂ given

the original input X, aiming to maximize the complete log probability P (X̂|X) with-

out knowing the latent variable Y explicitly. Since we focus on sequential structured

prediction problems, the encoding and decoding processes are no longer for a single

data point (x, y) (x if unlabeled), but for the whole input instance and output se-

quence (x,y) (x if unlabeled). Additionally, as our main purpose in this study is to

reconstruct the input with precision, x̂ is just a copy of x.

Encoder

Decoder

x̂t�1 x̂t+1x̂t

ytyt�1 yt+1

X

Y

X̂

x

(a) A generalized autoencoder.

Encoder

Decoder

x̂t�1 x̂t+1x̂t

ytyt�1 yt+1

X

Y

X̂

x

(b) The NCRFAE model in this work.

Figure 4.1.: On the left is a generalized autoencoder, of which the lower half is the

encoder and the upper half is the decoder. On the right is an illustration of the

graphical model of our NCRFAE model. The yellow squares are interactive (transi-

tion) potentials among labels, and the green squares represent the unary (emission)

potentials generated by the neural networks.
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As shown in Figure 4.1b, our NCRFAE model consists of two parts: the encoder

(the lower half) that is a discriminative CRF model enhanced by deep neural networks

as its potential generator with encoding parameters Λ, describing the probability of

a predicted sequence of labels given the input; the decoder (the upper half) that is

a generative model with reconstruction parameters Θ, modeling the probability of

reconstructing the input given a sequence of labels. We present our model formally

as follows:

PΘ,Λ(x̂|x) =
∑
y

PΘ,Λ(x̂,y|x)

=
∑
y

PΘ(x̂|y)PΛ(y|x),

where PΛ(y|x) is the probability given by the neural CRF encoder, and PΘ(x̂|y) is

the probability produced by the generative decoder.

When making a prediction, the model tries to find the most probable output

sequence by performing the following inference procedure using the Viterbi algorithm:

y∗ = argmax
y

PΘ,Λ(x̂,y|x).

To clarify, as we focus on POS tagging problems in this study, in the unsupervised

setting where the true POS tags are unknown, the labels used for reconstruction are

actually the POS tags being induced. The labels induced here are corespoding to the

hidden nodes in a generalized autoencoder model.

4.3.1 Neural CRF Encoder

In a CRF model, the probability of predicted labels y, given sequence x as input

is modeled as

PΛ(y|x) =
eΦ(x,y)

Z
,
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where Z =
∑̃
y

eΦ(x,ỹ) is the partition function that marginalize over all possible as-

signments to the predicted labels of the sequence, and Φ(x,y) is the scoring function,

which is defined as:

Φ(x,y) =
∑
t

ϕ(x, yt) + ψ(yt−1, yt).

The partition function Z can be computed efficiently via the forward-backward algo-

rithm. The term ϕ(x, yt) corresponds to the score of a particular tag yt at position

t in the sequence, and ψ(yt−1, yt) represents the score of transition from the tag at

position t − 1 to the tag at position t. In our NCRFAE model, ϕ(x, yt) is described

by deep neural networks while ψ(yt−1, yt) by a transition matrix. Such a structure

allows for the use of distributed representations of the input, for instance, the word

embeddings on a continuous vector space [Mikolov et al., 2013].

Typically in our work, ϕ(x, yt) is modeled jointly by a multi-layer perceptron

(MLP) that utilizes the word-level information, and a bi-directional long-short term

memory (LSTM) neural network [Hochreiter and Urgen Schmidhuber, 1997] that

captures the character level information within each word. A bi-directional structure

can extract character level information from both directions, with which we expect to

catch the prefix and suffix information of words in an end-to-end system, rather than

using hand-engineered features. The bi-directional LSTM (BiLSTM) neural network

takes as input the character embeddings ec ∈ Rk1 , where k1 is the dimensionality of

the character embeddings. A normal LSTM can be denoted as:

it = σ(Weiect +Whiht−1 + bi),

ft = σ(Wefect +Whfht−1 + bf ),

ot = σ(Weoect +Whoht−1 + bo),

gt = Relu(Wecect +Whcht−1 + bc),

ct = ft ⊙ ct−1 + it ⊙ gt,

ht = ot ⊙ tanh(ct),
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where ⊙ denotes element-wise multiplication. Then a bi-directional LSTM neural

network extends it as follows, by denoting the procedure of generating ht as H:

−→
h t = H(We

−→
h
ect +W−→

h
−→
h

−→
h t−1 + b−→

h
),

←−
h t = H(We

←−
h
ect +W←−

h
←−
h

←−
h t−1 + b←−

h
),

where ect here is the character embedding for character c in position t in a word.

The inputs to the MLP are the word embeddings ev ∈ Rk2 for each word v, where

k2 is the dimensionality of the vector, concatenated with the final representation

generated by the Bi-LSTM over the characters of that word: u = [ev;
−→
h v;
←−
h v]. In

order to leverage the capacity of the CRF model, we use a word and its context

together to generate the unary potential. More specifically, we adopt a concatenation

vt = [ut−(w−1)/2; · · · ;ut−1;ut;ut+1; · · · ;ut+(w−1)/2] as the inputs to the MLP model,

where t denotes the position in a sequence, and w being an odd number indicates

the context size. Further, in order to enhance the generality of our model, we add a

dropout layer on the input right before the MLP layer as a regularizer. Notice that

different from a normal MLP, the activation function of the last layer is no more a

softmax function, but a linear function generating the log-linear part ϕt(x, yt) of the

CRF model:

ht = Relu(Wvt + b)

ϕt = w⊺
yht + by.

The transition score ψ(yt−1, yt) is a single scalar representing the interactive po-

tential. We use a transition matrix Ψ to cover all the transitions between different

labels, and Ψ is part of the encoder parameters Λ.

All the parameters in the neuralized encoder are updated when the loss func-

tion is minimized via error back-propagation through all the structures of the neural

networks and the transition matrix.

The detailed structure of the neural CRF encoder is demonstrated in Fig 4.2.

Note that the MLP layer is also interchangeable with a RNN layer or LSTM layer.
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But in our pilot experiments, we found a single MLP structure yields better perfor-

mance, which we conjecture is due to over-fitting caused by the high complexity of

the alternatives.

T h a t i s a m o n e y m a k e r

l1

r1

e1

u1

PRON

l2

r2

e2

u2

VERB

l3

r3

e3

u3

DET

l4

r4

e4

u4

NOUN

l5

r5

e5

u5

NOUN

Figure 4.2.: A demonstration of the neural CRF encoder. lt and rt are the output

of the forward and backward character-level LSTM of the word at position t in a

sentence, and et is the word-level embedding of that word. ut is the concatenation

of et, lt and rt, denoted by blue dashed arrows.

4.3.2 Generative Decoder

In our NCRFAE model, we assume the generative process follows several multi-

nomial distributions: each label y has the probability θy→x to reconstruct the corre-

sponding word x, i.e., P (x|y) = θy→x. This setting naturally leads to a constraint∑
x

θy→x = 1. The number of parameters of the decoder is |Y| × |X |. For a whole

sequence, the reconstruction probability is PΘ(x̂|y) =
∏
t

P (x̂t|yt).
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4.4 A Unified Learning Framework

We first constructed two loss functions for labeled and unlabeled data using the

same model. Our model is trained in an on-line fashion: given a labeled or unlabeled

sentence, our NCRFAE optimizes the loss function by choosing the corresponding one.

In an analogy to coordinate descent, we optimize the loss function of the NCRFAE

by alternatively updating the parameters Θ in the decoder and the parameters Λ

in the encoder. The parameters Θ in the decoder are updated via a variation of

the Expectation-Maximization (EM) algorithm, and the the parameters Λ in the

encoder are updated through a gradient-based method due to the non-convexity of

the neuralized CRF. In contrast to the early autoencoder models [Ammar et al., 2014,

Lin et al., 2015], our model has two distinctions: First, we have two loss functions

to model labeled example and unlabeled examples; Second, we designed a variant of

EM algorithm to alternatively learn the parameters of the encoder and the decoder

at the same time.

4.4.1 Unified Loss Functions for Labeled and unlabeled Data

For a sequential input with labels, the complete data likelihood given by our

NCRFAE is

PΘ,Λ(x̂,y|x) = PΘ(x̂|y)PΛ(y|x)

=

[∏
t

P (x̂t|yt)

]
eΦ(x,y)

Z

=
e

∑
t
st(x,y)

Z
,

where

st(x,y) = logP (xt|yt) + ϕ(x, yt) + ψ(yt−1, yt).
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If the input sequence is unlabeled, we can simply marginalize over all the possible

assignment to labels. The probability is formulated as

PΘ,Λ(x̂|x) =
∑
y

P (x̂,y|x)

=
U

Z
,

where U =
∑
y

e

∑
t
st(x,y)

.

Our formulation have two advantages. First, term U is different from but in a

similar form as term Z, such that to calculate the probability P (x̂|x) for an unla-

beled sequence, the forward-backward algorithm to compute the partition function

Z can also be applied to compute U efficiently. Second, our NCRFAE highlights a

unified structure of different loss functions for labeled and unlabeled data with shared

parameters. Thus during training, our model can address both labeled and unlabeled

data well by alternating the loss functions. Using negative log-likelihood as our loss

function, if the data is labeled, the loss function is:

lossl = − logPΘ,Λ(x̂,y|x)

= −(
∑
t

st(x,y)− logZ)

If the data is unlabeled, the loss function is:

lossu = − logPΘ,Λ(x̂|x)

= −(logU − logZ).

Therefore, during training, based on whether the encountered data is labeled or unla-

beled, our model can select the appropriate loss function for learning parameters. In

practice, we found for labeled data, using a combination of lossl and lossu actually

yields better performance.

4.5 Mixed Expectation-Maximization Algorithm

The Expectation-Maximization (EM) algorithm [Dempster et al., 1977] was ap-

plied to a wide range of problems. Generally, it establishes a lower-bound of the
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objective function by using Jensen’s Inequality. It first tries to find the posterior

distribution of the latent variables, and then based on the posterior distribution of

the latent variables, it maximizes the lower-bound. By alternating expectation (E)

and maximization (M) steps, the algorithm iteratively improves the lower-bound of

the objective function.

In this section we describe the mixed Expectation-Maximization (EM) algorithm

used in our study. Parameterized by the encoding parameters Λ and the reconstruc-

tion parameters Θ, our NCRFAE consists of the encoder and the decoder, which

together forms the log-likelihood a highly non-convex function. However, a careful

observation shows that if we fix the encoder, the lower bound derived in the E step,

is convex with respect to the reconstruction parameters Θ in the M step. Hence, in

the M step we can analytically obtain the global optimum of Θ. With respect to the

reconstruction parameters Θ by fixing Λ, we describe our EM algorithm in iteration

t as follows:

In the E-step, we let Q(yi) = P (yi|xi, x̂i), and treat yi the latent variable as it

is not observable in unlabeled data. We derive the lower-bound of the log-likelihood

using Q(yi): ∑
i

logP (x̂i|xi) =
∑
i

log
∑
yi

Q(yi)
P (x̂i,yi|xi)

Q(yi)

≥
∑
i

∑
yi

Q(yi) log
P (x̂i,yi|xi)

Q(yi)
,

where Q(yi) is computed using parameters Θ(t−1) in the previous iteration t− 1.
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In the M-step, we try to improve the aforementioned lower-bound using all exam-

ples:

argmax
Θ(t)

∑
i

∑
yi

Q(yi) log
PΘ(t)(x̂i|yi)PΛ(yi|xi)

Q(yi)

argmax
Θ(t)

∑
i

∑
yi

Q(yi) logPΘ(t)(x̂i|yi) + const

argmax
Θ(t)

∑
y→x

log θ(t)y→x

∑
y

Q(y)C(y, x)

argmax
Θ(t)

∑
y→x

log θ(t)y→xEy∼Q[C(y, x)]

s.t.
∑
x

θ(t)y→x = 1.

In this formulation, const is a constant with respect to the parameters we are

updating. Q(y) is the distribution of a label y at any position by marginalizing labels

at all other positions in a sequence. By denoting C(y, x) as the number of times

that (x, y) co-occurs, Ey∼Q
Θ(t−1)

[C(y, x)] is the expected count of a particular recon-

struction at any position, which can also be calculated using Baum-Welch algorithm

[Welch, 2003], and can be summed over for all examples in the dataset (In the labeled

data, it is just a real count). The algorithm we used to calculate the expected count is

described in Algorithm 1. Therefore, it can be shown that the aforementioned global

optimum can be calculated by simply normalizing the expected counts. In terms of

the encoder’s parameters Λ, they are first updated via a gradient-based optimization

before each EM iteration. Based on the above discussion, our Mixed EM Algorithm

is presented in Algorithm 2.
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Algorithm 1 Obtain Expected Count (Te)
Require: the expected count table Te

1: for an unlabeled data example xi do

2: Compute the forward messages: α(y, t) ∀y, t. ▷ t is the position in a

sequence.

3: Compute the backward messages: β(y, t) ∀y, t.

4: Calculate the expected count for each x in xi: P (yt|xt) ∝ α(y, t)× β(y, t).

5: Te(xt, yt)← Te(xt, yt) + P (yt|xt) ▷ Te is the expected count table.

6: end for

Algorithm 2 Mixed Expectation-Maximization
1: Initialize expected count table Te using labeled data {x,y}li and use it as Θ(0) in

the decoder.

2: Initialize Λ(0) in the encoder randomly.

3: for t in epochs do

4: Train the encoder on labeled data {x,y}l and unlabeled data {x}u to update

Λ(t−1) to Λ(t).

5: Re-initialize expected count table Te with 0s.

6: Use labeled data {x,y}l to calculate real counts and update Te.

7: Use unlabeled data {x}u to compute the expected counts with parameters

Λ(t) and Θ(t−1) and update Te.

8: Obtain Θ(t) globally and analytically based on Te.

9: end for

This mixed EM algorithm is a combination of the gradient-based approach to

optimize the encoder by minimizing the negative log-likelihood as the loss function,

and the EM approach to update the decoder’s parameters by improving the lower-

bound of the log-likelihood.
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Table 4.1.: This table shows the statistics of different UD languages used in our

experiments, including the number of tokens, and the number of sentences in training

(train), development (dev) and testing (test) set respectively.

English French German Italian Russian Spanish Indonesian Croatian

Tokens 254830 391107 293088 272913 99389 423346 121923 139023

Train 12543 14554 14118 12837 4029 14187 4477 5792

Dev 2002 1596 799 489 502 1552 559 200

Test 2077 298 977 489 499 274 297 297

4.6 Experiments

4.6.1 Experimental Settings

Dataset We evaluated our model on the POS tagging task, in both the supervised

and semi-supervised learning settings, over eight different languages from the UD

(Universal Dependencies) 1.4 dataset [Mcdonald et al., 2013]. The task is defined

over 17 different POS tags, used across different languages. We followed the original

UD division for training, development and testing in our experiments. The statistics

of the data used in our experiments are described in Table 4.1. The UD dataset

includes several low-resource languages which are of particular interest to our semi-

supervised model.

Input Representation and Neural Architecture Our model uses word embeddings

as input. In our pilot experiments, we compared the performance on the English

dataset of the pre-trained embedding from Google News [Mikolov et al., 2013] and

the embeddings we trained directly on the UD dataset using the skip-gram algorithm

[Mikolov et al., 2013]. We found these two types of embeddings yield very similar

performance on the POS tagging task. So in our experiments, we used embeddings of

different languages directly trained on the UD dataset as input to our model, whose
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dimension is 200. In the MLP neural network layer, the number of hidden nodes in

the hidden layer is 20, which is the same as the hidden layer in the character-level

LSTM. The dimension of the character-level embeddings fed into the LSTM layer is

15, which is randomly initialized. In order to incorporate the global information of

the input sequence, we set the context window size to 3. The dropout rate for the

dropout layer is set to 0.5.

Learning We used ADADELTA [Zeiler, 2012] to learn parameters Λ in the encoder,

as ADADELTA dynamically adapts learning rate over time using only first order infor-

mation and has minimal computational overhead beyond vanilla stochastic gradient

descent (SGD). The authors of ADADELTA also argue this method appears robust to

noisy gradient information, different model architecture choices, various data modal-

ities and selection of hyper-parameters. We observed that ADADELTA indeed had

faster convergence than vanilla SGD optimization. In our experiments, we included

word embeddings and character embeddings as parameters as well. We used Theano

to implement our algorithm, and all the experiments were run on NVIDIA GPUs. To

prevent over-fitting, we used the “early-stop” strategy to determine the appropriate

number of epochs during training. We did not take efforts to tune those hyper-

parameters and they remained the same in both our supervised and semi-supervised

learning experiments.

4.6.2 Supervised Learning

In these settings our Neural CRF autoencoder model had access to the full amount

of annotated training data in the UD dataset. As described in Section 4.5, the

decoder’s parameters Θ were estimated using real counts from the labeled data.

We compared our model with existing sequence labeling models including HMM,

CRF, LSTM and neural CRF (NCRF) on all the 8 languages. Among these models,

the NCRF can be most directly compared to our model, as it is used as the base of
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Text Google is a nice search engine .

Gold PROPN VERB DET ADJ NOUN NOUN PUNCT

NCRF-AE PROPN VERB DET ADJ NOUN NOUN PUNCT

NCRF NOUN VERB DET ADJ NOUN NOUN PUNCT

LSTM PROPN VERB DET ADJ VERB NOUN PUNCT

Figure 4.3.: This figure shows an example from the test set to compare the predicted

results of our NCRFAE model, the NCRF model and the LSTM model.

our model, but without the decoder (and as a result, can only be used for supervised

learning).

The results, summarized in Table 4.2, show that our NCRFAE consistently out-

performed all other systems, on all the 8 languages, including Russian, Indonesian

and Croatian which had considerably less data compared to other languages. In-

terestingly, the NCRF consistently came second to our model, which demonstrates

the efficacy of the expressivity added to our model by the decoder, together with an

appropriate optimization approach.

Table 4.2.: This table shows supervised learning performance of POS tagging on 8

UD languages using different models

Models English French German Italian Russian Spanish Indonesian Croatian

HMM 86.28% 91.23% 85.59% 92.03% 79.82% 91.31% 89.40% 86.98%

CRF 89.96% 93.40% 86.83% 94.07% 83.38% 91.47% 88.63% 86.90%

LSTM 90.50% 94.16% 88.40% 94.96% 84.87% 93.17% 89.42% 88.95%

NCRF 91.52% 95.07% 90.27% 96.20% 93.37% 93.34% 92.32% 93.85%

NCRFAE 92.50% 95.28% 90.50% 96.64% 93.60% 93.86% 93.96% 94.32%

To better understand the performance difference by different models, we per-

formed error analysis, using an illustrative example, described in Figure 4.3.
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Table 4.3.: This table shows semi-supervised learning accuracy of POS tagging on

8 UD languages. HEM means hard-EM, used as a self-training approach, and OL

means only 20% of the labeled data is used and no unlabeled data is used.

Models English French German Italian Russian Spanish Indonesian Croatian

NCRF
(OL)

88.01% 93.38% 90.43% 91.75% 86.63% 91.22% 88.35% 86.11%

NCRFAE
(OL)

88.41% 93.69% 90.75% 92.17% 87.82% 91.70% 89.06% 87.92%

HMM-

EM

79.92% 88.15% 77.01% 84.57% 72.96% 86.77% 83.61% 77.20%

NCRFAE
(HEM)

86.79% 92.83% 89.78% 90.68% 86.39% 91.30% 88.86% 86.55%

NCRFAE 89.43% 93.89% 90.99% 92.85% 88.93% 92.17% 89.41% 89.14%

In this example, the LSTM incorrectly predicted the POS tag of the word “search”

as a verb, instead of a noun (part of the NP “nice search engine”), while predicting

correctly the preceding word, “nice”, as an adjective. We attribute the error to

LSTM lacking an explicit output transition scoring function, which would penalize

the ungrammatical transition between “ADJ” and “VERB”.

The NCRF, which does score such transitions, correctly predicted that word.

However, it incorrectly predicted “Google” as a noun rather than a proper-noun.

This is a subtle mistake, as the two are grammatically and semantically similar. This

mistake appeared consistently in the NCRF results, while NCRFAE predictions were

correct.

We attribute this success to the superior expressivity of our model: The predic-

tion is done jointly by the encoder and the decoder, as the reconstruction decision is

defined over all output sequences, picking the jointly optimal sequence. From another

perspective, our NCRFAE model is a combination of discriminative and generative

models, in that sense the decoder can be regarded as a soft constraint that supple-
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ments the encoder. Such that, the decoder performs as a regularizer to check-balance

the choices made by the encoder.

4.6.3 Semi-supervised Learning

In the semi-supervised settings we compared our models with other semi-supervised

structured prediction models. In addition, we studied how varying the amount of un-

labeled data would ionfluence the performance of our model.

As described in Sec. 4.5, the decoder’s parameters Θ are initialized by the labeled

dataset using real counts and updated in training.

Varying Unlabeled Data Proportion We first experimented with varying the pro-

portion of unlabeled data, while fixing the amount of labeled data. We conducted

these experiments over two languages, English and low-resource language Croatian.

We fixed the proportion of labeled data at 20%, and gradually added more unlabeled

data from 0% to 20% (from full supervision to semi-supervision). The unlabeled data

was sampled from the same dataset (without overlapping with the labeled data), with

the labels removed. The results are shown in Figure 4.4.

The left most point of both sub-figures is the accuracy of fully supervised learning

with 20% of the whole data. As we can observe, the tagging accuracy increased as

the proportion of unlabeled data increased.

Semi-supervised POS Tagging on Multiple Languages We compared our NCRFAE

model with other semi-supervised learning models, including the HMM-EM algorithm

and the hard-EM version of our NCRFAE. The hard-EM version of our model can

be considered as a variant of self-training, as it infers the missing labels using the

current model in the E-step, and uses the real counts of these labels to update the

model in the M-step. To contextualize the results, we also provide the results of the

NCRF model and the supervised version our NCRFAE model trained on 20% of the

data. We set the proportion of labeled data to 20% for each language and set the
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Figure 4.4.: UD English and Croatian POS tagging accuracy versus increasing pro-

portion of unlabeled sequences using 20% labeled data. The green straight line is the

performance of the neural CRF, trained over the labeled data.

proportion of unlabeled data to 50% of the dataset. There was no overlap between

labeled and unlabeled data.

The results are summarized in Table 4.3. Similar to the supervised experiments,

the supervised version of our NCRFAE, trained over 20% of the labeled data, outper-

forms the NCRF model. Our model was able to successfully use the unlabeled data,

leading to improved performance in all languages, over both the supervised version

of our model, as well as the HMM-EM and Hard-EM models that were also trained

over both the labeled and unlabeled data.

Varying Sizes of Labeled Data on English As is known to all, semi-supervised ap-

proaches tend to work well when given a small size of labeled training data. But with

the increase of labeled training data size, we might get diminishing effectiveness. To

verify this conjecture, we conducted additional experiments to show how varying sizes

of labeled training data affect the effectiveness of our NCRFAE model. In these ex-

periments, we gradually increased the proportion of labeled data, and in accordance

decreased the proportion of unlabeled data.
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Figure 4.5.: This figure shows the performance of the NCRFAE model on different

proportion of labeled and unlabeled data. The green line shows the results on only

labeled data, and the red line on both labeled and unlabeled data. The difference

between the red line and the green line are gradually vanishing.

The results of these experiments are demonstrated in Figure 4.5. As we speculated,

we observed diminishing effectiveness when increasing the proportion of labeled data

in training.

4.7 Conclusion

We proposed an end-to-end neural CRF autoencoder (NCRFAE) model for semi-

supervised sequence labeling. Our NCRFAE combines a discriminative component

and a generative component, extending the generalized autoencoder by using a neural

CRF model as its encoder and a generative decoder built on top of it. We also

suggested a variant of the EM algorithm to learn the parameters of our NCRFAE

model.

We evaluated our model in both supervised and semi-supervised scenarios over

multiple languages, and show it can outperform other supervised and semi-supervised
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methods. Additional experiments suggest how varying sizes of labeled training data

affects the effectiveness of our model.

These results demonstrate the strength of our model, as it was able to utilize the

small amount of labeled data and exploit the hidden information from the large

amount of unlabeled data, without additional feature engineering which is often

needed in order to get semi-supervised and weakly-supervised systems to perform

well. The superior performance on the low-resource language also suggests its poten-

tial in practical use.
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5 SEMI-SUPERVISED AUTOENCODING DEPENDENCY PARSING

From the perspective of linguistics, instead of as sequences, sentences can also be rep-

resented as dependency trees using dependency grammar to present enriched syntactic

relationships between tokens, especially the predicate-argument structure that is fre-

quently used in downstream tasks. Constructing tree banks for different languages is

known for its high cost of hiring linguists, training annotators and compiling corpus.

Semi-supervised parsing with fewer dependency tree annotation is a desirable way for

training parsers to parse unseen text, especially for low-resource languages, in which

the annotation is even more difficult.

In this chapter, we introduce two models for graph-based semi-supervised pro-

jective dependency parsing, namely locally autoencoding parser (LAP) and globally

autoencoding parser (GAP). The LAP model assumes latent variables exists for the

sentence which is used as intermediate representation to build the dependency tree;

while the GAP model treats the dependency tree itself as a latent variable. During

the training process, the LAP maximize the approximation of its Evidence Lower

Bound (ELBO) via contrast-divergence [Carreira-Perpinan and Hinton, 2005] as that

in VAE. In GAP, instead, We derived an algorithm which is a variant of the Eis-

ner’s algorithm [Eisner, 1996] extending the EM algorithm for spanning trees, able to

compute the ELBO exactly thus we maximize the ELBO directly.

By comparing the performance and running complexity with other baselines, we

show LAP and GAP trade-off on speed and accuracy. The experimental results on

several languages also show both LAP and GAP can use unlabeled data to assist

training with labeled data, to improve on the performance using labeled data alone.

In addition, GAP also outperforms several current competitors.
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5.1 Introduction

Dependency parsing captures bi-lexical relationships by constructing directional

arcs between words, defining a head-modifier syntactic structure for sentences, as

shown in Figure 5.1. Dependency trees are fundamental for many downstream tasks

such as semantic parsing [Reddy et al., 2016, Marcheggiani and Titov, 2017], machine

translation [Bastings et al., 2017, Ding and Palmer, 2007], information extraction

[Culotta and Sorensen, 2004, Liu et al., 2015] and question answering [Cui et al.,

2005]. As a result, efficient parsers [Kiperwasser and Goldberg, 2016, Dozat and

Manning, 2017, Dozat et al., 2017, Ma et al., 2018b] have been developed using

various neural architectures.

PRP$ NN RB VBZ VBG NN PUNC
My dog also likes eating sausage .

root

poss

nsubj

advmod xcomp dobj

pu

Figure 5.1.: This figure shows a dependency tree: directional arcs represent head-

modifier relation between tokens.

While supervised approaches have been very successful, they require large amounts

of labeled data, particularly when neural architectures are used. Syntactic annotation

is notoriously difficult and requires specialized linguistic expertise, posing a serious

challenge for low-resource languages. Semi-supervised parsing aims to alleviate this

problem by combining a small amount of labeled data and a large amount of unlabeled

data, to improve on the performance using labeled data alone. Traditional semi-

supervised parsers use unlabeled data to generate additional features to assist the

learning process [Koo et al., 2008], together with different variants of self-training

[Søgaard, 2010]. However, these approaches are usually pipe-lined with manually

crafted features, therefore error-propagation may occur.
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In this study, we propose two end-to-end semi-supervised parsers, illustrated in

Figure 5.2, namely Locally Autoencoding Parser (LAP) and Globally Autoencoding

Parser (GAP). In LAP, the autoencoder model uses unlabeled examples to learn con-

tinuous latent variables of the sentence, which then are used to support tree inference

by providing an enriched representation. Unlike LAP which does not perform tree

inference when learning from unlabeled examples, in GAP, the dependency trees cor-

responding to the input sentences are treated as latent variables, and as a result the

information learned from unlabeled data aligns better with the final tree prediction

task.

Unfortunately, regarding trees as latent variables may cause the computation to

be intractable, as the number of possible dependency trees to enumerate is expo-

nentially large. A recent work [Corro and Titov, 2018], dealt with this difficulty by

regenerating a particular tree of high possibility through sampling, which is Monte-

Carlo estimation. In this study, we suggest a tractable algorithm for GAP, to directly

compute all the possible dependency trees in an arc-decomposed manner, providing

a tighter bound compared to [Corro and Titov, 2018]’s with lower time complex-

ity. We demonstrate these advantages empirically by evaluating our model on two

dependency parsing datasets. We summarize our contributions as follows:

1. We proposed two autoencoding parsers for semi-supervised dependency parsing,

with complementary strengths, trading off speed vs. accuracy;

2. We propose a tractable inference algorithm to compute the expectation of the

latent dependency tree analytically for GAP, which is naturally extendable to

other tree-structured graphical models;

3. We show improved performance of both LAP and GAP with unlabeled data on

WSJ and UD datasets on using labeled data alone, and on a recently proposed

semi-supervised parser [Corro and Titov, 2018].
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5.2 Related Work

Most dependency parsing studies fall into two major groups: graph-based and

transition-based [Kubler et al., 2009]. Graph-based parsers [McDonald, 2006] regard

parsing as a structured prediction problem to find the most probable tree, while

transition-based parsers [Nivre, 2004, 2008] treat parsing as a sequence of actions at

different stages leading to a dependency tree.

While earlier works relied on manual feature engineering, in recent years the hand-

crafted features were replaced by embeddings and deep neural network architectures

were used to learn representation for scoring structural decisions, leading to improved

performance in both graph-based and transition-based parsing [Nivre, 2014, Pei et al.,

2015, Chen and Manning, 2014, Dyer et al., 2015, Weiss et al., 2015, Andor et al.,

2016, Kiperwasser and Goldberg, 2016, Wiseman and Rush, 2016].

The annotation difficulty for this task, has also motivated several works on un-

supervised (grammar induction) and semi-supervised approaches to parsing [Tu and

Honavar, 2012, Jiang et al., 2016, Koo et al., 2008, Li et al., 2014, Kiperwasser and

Goldberg, 2015, Cai et al., 2017, Corro and Titov, 2018]. It also leads to advances in

using unlabeled data for constituent grammar [Shen et al., 2018b,a] as well.

Similar to other structured prediction tasks, directly optimizing the objective

is difficult when the underlying probabilistic model requires marginalizing over the

dependency trees. Variational approaches are a natural way to alleviate this difficulty,

as they try to improve the lower bound of the original objective, and have been applied

in several recent NLP works [Stratos, 2019, Chen et al., 2018, Kim et al., 2019b,a].

Variational Autoencoder (VAE) [Kingma and Welling, 2014] is particularly useful for

latent representation learning, and has been studied in semi-supervised context as

the Conditional VAE (CVAE) [Sohn et al., 2015]. Note our work differs from VAE

as VAE is designed for tabular data but not for structured prediction problems. Our

work is more related to structured VAEs [Johnson et al., 2016].
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The work mostly related to ours is Corro and Titov [2018]’s as they consider the

dependency tree as the latent variable, but their work takes a second approximation

to the variational lower bound by an extra sampling step to sample from the latent de-

pendency tree, without identifying a tractable inference. We show that with the given

structure, exact inference on the lower bound is achievable without approximation

by sampling, which tightens the lower bound.

5.3 Graph-based Dependency Parsing

A dependency graph of a sentence can be regarded as a directed tree spanning

all the words of the sentence, including a special “word”–the ROOT–to originate

out. Assuming a sentence of length l, a dependency tree can be denoted as T = (<

h1,m1 >, . . . , < hl−1,ml−1 >), where ht is the index in the sequence of the head word

of the dependency connecting the tth word mt as a modifier.

Our graph-based parsers are constructed by following the standard structured

prediction paradigm [McDonald et al., 2005, Taskar et al., 2005]. In inference, based

on the parameterized scoring function SΛ with parameter Λ, the parsing problem is

formulated as finding the most probable directed spanning tree for a given sentence

x:

T ∗ = argmax
T̃ ∈T
SΛ(x, T̃ ),

where T ∗ is the highest scoring parse tree and T is the set of all valid trees for the

sentence x.

It is common to factorize the score of the entire graph into the summation of its

substructures: the individual arc scores [McDonald et al., 2005]:

SΛ(x, T̃ ) =
∑

(h,m)∈T̃

sΛ(h,m) =
l∑

t=1

sΛ(ht,mt),

where T̃ represents the candidate parse tree, and sΛ is a function scoring individual

arcs. sΛ(h,m) describes the likelihood of an arc from the head h to its modifier m
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in the tree. Throughout this chapter, the scoring is based on individual arcs, as we

focus on first-order parsing.

5.3.1 Scoring Function Using Neural Architecture

We used the same neural architecture as that in Kiperwasser and Goldberg [2016]’s

study. We first use a bi-LSTM model to take as input ut = [pt; et] at position t to

incorporate contextual information, by feeding the word embedding et concatenated

with the POS (part of speech) tag embeddings pt of each word. The bi-LSTM then

projects ut as ot.

Subsequently a nonlinear transformation is applied on these projections. Suppose

the hidden states generated by the bi-LSTM are [oroot,o1,o2, . . . ,ot, . . . ,ol], for a

sentence of length l, we compute the arc scores by introducing parameters Wh, Wm,

w and b, and transform them as follows:

rh−arc
t = Whot; rm−arc

t = Wmot,

sΛ(h,m) = w⊺(tanh(rh−arc
h + rm−arc

m + b)).

In this formulation, we first use two parameters to extract two different representa-

tions that carry two different types of information: a head seeking for its modifier

(h-arc); as well as a modifier seeking for its head (m-arc). Then a nonlinear function

maps them to an arc score.

For a single sentence, we can form a scoring matrix as shown in Figure 5.3, by

filling each entry in the matrix using the score we obtained. Therefore, the scoring

matrix is used to represent the head-modifier arc scores for all the possible arcs

connecting two tokens in a sentence [Zheng, 2017].

Using the scoring arc matrix, we build graph-based parsers. Since exploring neural

architectures for scoring is not our focus, we did not try other complicates, however

performance shall be further improved by using advanced neural architectures [Dozat

and Manning, 2017, Dozat et al., 2017].
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Figure 5.2.: This figure illustrates two different parsers. (a) LAP uses continuous

latent variable to form the dependency tree (b) GAP treats the dependency tree as

the latent variable.
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Figure 5.3.: This figure illustrates the arc scoring matrix, in which each entry repre-

sents the (h(head)→ m(modifier)) score.
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5.4 Locally Autoencoding Parser (LAP)

LAP is a fast, semi-supervised parser able to make use of unlabeled data in addi-

tion to labeled data. The illustration of this model is displayed in Figure 5.2a. LAP

learns, using both labeled and unlabeled data, a continuous latent variables repre-

sentation, designed to support the parsing task by creating contextualized token-

representations that capture properties of the full sentence. Typically, each token

in the sentence is represented by its latent variable zt, which is a high-dimensional

Gaussian variable, to be aggregated as a group of latent variables z. This configura-

tion ensures the continuous latent variable retains the contextual information from

lower-level neural models to assist finding its head or its modifier; as well as forc-

ing the representation of similar tokens to be closer. The latent variable group z is

modeled via P (z|x). In addition, we model the process of reconstructing the input

sentence from the latent variable through a generative story P (x|z).

We adjust the original VAE setup in our semi-supervised task by considering

examples with labels, similar to recent conditional variational formulations [Sohn

et al., 2015, Miao and Blunsom, 2016, Zhou and Neubig, 2017]. We propose a full

probabilistic model for a given sentence x, with the unified objective to maximize for

both supervised and unsupervised parsing as follows:

J = logPθ(x)P
ϵ
ω(T |x), ϵ =

1, if T exists,

0, otherwise.

This objective can be interpreted as follows: if the training example has a golden

tree T with it, then the objective is the log joint probability logPθ,ω(T ,x); if the

golden tree is missing, then the objective is the log marginal probability logPθ(x).

The probability of a certain tree is modeled by a tree-CRF in Eq. 2.2 with parameters

ω as Pω(T |x). Following the VAE inference framework, given the assumed generative
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process Pθ(x|z), directly optimizing this objective is intractable, instead optimize its

Evidence Lower Bound (ELBO) :

Jlap = E
z∼Qϕ(z|x)

[logPθ(x|z)]−KL(Qϕ(z|x)||Pθ(z))

+ ϵ E
z∼Qϕ(z|x)

[logPω(T |z)] .

We show Jlap is the ELBO of J in the appendix B.1. In practice, similar as

VAE-style models, E
z∼Qϕ(z|x)

[logPθ(x|z)] is approximated by 1
N

∑N
j=1 logPθ(x|zj) and

E
z∼Qϕ(z|x)

[logPω(T |z)] by 1
N

∑N
j=1 logPω(T |zj), where zj is the j-th sample of N

samples sampled from Qϕ(z|x), which is a auxiliary distribution parameterized by

neural architecture to approximate P (z|x). We describe the details of Qϕ(z|x) in the

appendix B.2. At prediction stage, we simply use the mean µz rather than sampling

z.

5.4.1 Incorporating POS and External Embeddings

In previous studies [Chen and Manning, 2014, Dozat and Manning, 2017, Dozat

et al., 2017, Kiperwasser and Goldberg, 2016] exploring parsing using neural archi-

tectures, POS tags and external embeddings have been shown to contain important

information characterizing the dependency relationship between a head and a child.

Therefore, in addition to the variational autoencoding framework taking as input the

randomly initialized word embeddings, optionally we can build the same structure for

POS to reconstruct tags and for external embeddings to reconstruct words as well,

whose variational objectives are Up and Ue respectively. Hence, the final variational

objective can be a combination of three: U = Uw(The original U in Lemma B.1.1) +

Up + Ue (or just U = Uw + Up if external embeddings are not used).

5.5 Globally Autoencoding Parser (GAP)

LAP autoencodes the input locally at the sequence level, focusing on the textual

representation in isolation by connecting them to the parsing algorithm. A more
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direct approach is to treat the entire dependency tree as a structured latent variable

to reconstruct the input. This approach connects the sentence representation and

the dependency tree in more immediately, thus the latent variable is handled in a

straightforward manner.

Based on this motivation, we propose, globally autoencoding parser or GAP, by

building a model containing both a discriminative component and a generative com-

ponent to jointly learn the downstream representations and the dependency structure

construction. The discriminative component builds a neural CRF model for depen-

dency tree construction, and the generative model reconstructs the sentence from

the factor graph as a Bayesian network, by assuming a generative process in which

each head generates its modifier. Concretely, the latent variable in this model is the

dependency tree structure.

5.5.1 Discriminative Component: the Encoder

We model the discriminative component in our model as PΦ(T |x) parameterized

by Φ, taking the same form as in Eq. 2.2. Typically in our model, Φ are the

parameters of the underlying neural networks, whose architecture is described in Sec.

5.3.1.

5.5.2 Generative Component: the Decoder

We use a set of conditional categorical distributions to construct our Bayesian

network decoder. More specifically, using the head h and modifier m notation, each

head reconstructs its modifier with the probability P (mt|ht) for the tth word in the

sentence (0th word is always the special “ROOT” word), which is parameterized

by the set of parameters Θ. Given Θ as a matrix of |V| by |V|, where |V| is the

vocabulary size, θmh is the item on row m column h denoting the probability that the

head word h generates m. In addition, we have a simplex constraint
∑

m∈V θmh = 1.
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The probability of reconstructing the input x as modifiersm in the generative process

is

PΘ(m|T ) =
l∏
t

P (mt|ht) =
l∏
t

θmtht ,

where l is the sentence length and P (mt|ht) represents the probability a head generates

its modifier.

5.5.3 A Unified Supervised and Unsupervised Learning Framework

With the design of the discriminative component and the generative component

of the proposed model, we have a unified learning framework for sentences with or

without golden parse trees.

The complete data likelihood of a given sentence, if the golden tree is given, is

PΘ,Φ(m, T |x) =PΘ(m|T )PΦ(T |x)

=

[
l∏

t=1

P (mt|ht)

]
expSΦ(x, T )

Z(x)

=

exp
∑

(h,m)∈T
s
′
Φ,Θ(h,m)

Z(x)
,

where s′Φ,Θ(h,m) = sΦ(h,m) + log θmh, with m,x and T all observable.

For a unlabeled sentence, the complete data likelihood can be obtained by marginal-

izing over all the possible parse trees in the set T(x):

PΘ,Φ(m|x) =
∑
T ∈T(x)

PΘ,Φ(m, T |x)

=
U(x)

Z(x)
,

where U(x) =
∑
T ∈T(x) exp

∑
(h,m)∈T

s
′
Φ,Θ(h,m).

We adapted a variant of Eisner [1996]’s algorithm to marginalize over all possible

trees to compute both Z and U , as U has the same structure as Z, assuming a

projective tree.
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We use log-likelihood as our objective function. The objective for a sentence with

golden tree is:

Jl = logPΘ,Φ(m, T |x)

=
∑

(h,m)∈T

s
′

Φ,Θ(h,m)− logZ(x)

If the input sentence does not have an annotated golden tree, then the objective is:

Ju = logPΘ,Φ(m|x)

= logU(x)− logZ(x). (5.1)

Thus, during training, the objective function with shared parameters is chosen based

on whether the sentence in the corpus has golden parse tree or not.

5.5.4 Learning

Directly optimizing the loss in Eq.5.1 is difficult when using the unlabeled data,

and may lead to undesirable shallow local optima. Instead, we derive the evidence

lower bound (ELBO) of logPΘ,Φ(m|x) as follows, by denoting Q(T ) = PΘ,Φ(T |m,x)

as the posterior:

logPΘ,Φ(m|x) = log
∑
T

Q(T )PΘ,Φ(m, T |x)
Q(T )

= logET ∼Q(T )
PΘ,Φ(m, T |x)

Q(T )

≥ ET ∼Q(T ) log
PΘ,Φ(m, T |x)

Q(T )

= ET ∼Q(T ) [logPΘ(m|T )]−KL [Q(T )||PΦ(T |x)] .

Therefore, instead of maximizing the log-likelihood directly, we alternatively max-

imize the ELBO, so our new objective function for unlabeled data becomes

max
Θ,Φ

ET ∼Q(T ) [logPΘ(m|T )]−KL [Q(T )||PΦ(T |x)] .
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Figure 5.4.: This figure illustrates how tractable inference can be done by marginal-

ization in a arc-decomposed manner.

Note instead of using the Monte Carlo sampling to approximate the ELBO above as

done in [Corro and Titov, 2018]’s work: ET ∼Q(T ) [logPΘ(m|T )]−KL [Q(T )||PΦ(T |x)] ≈
1
N

∑N
j=1 [logPΘ(m|Tj)] − KL [Q(Tj)||PΦ(Tj|x)], we identify a tractable algorithm to

calculate it directly, making the bound tighter.

In addition, to account for the unambiguity in the posterior, we incorporate en-

tropy regularization [Tu and Honavar, 2012] when applying our algorithm, by adding

an entropy term −
∑
T Q(T ) logQ(T ) with a non-negative factor σ when the input

sentence does not have a golden tree. Adding this regularization term is equivalent

as raising the expectation of Q(T ) to the power of 1
1−σ . We annealed σ from the

beginning of training to the end, as in the beginning, the generative model is well

initialized by sentences with golden trees that resolve disambiguity.
In practice, we found the model benefits more by fixing the parameter Φ when

the data is unlabeled and optimizing the ELBO sorely w.r.t. the parameter Θ. We

attribute this to the strict convexity of the ELBO w.r.t. Θ, by sketching the proof

in Appendix B.3. The details of the entire training procedure are shown in Alg. 3.

5.5.5 Tractable Inference

The common approach to approximate the expectation of the latent variables

from the posterior distribution Q(T ) is via sampling in VAE-type models [Kingma
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Algorithm 3 Learning Algorithm for GAP
1: Initialize the parameter Θ in the decoder with the labeled dataset {x, T }l.

2: Initialize Λ in the encoder randomly.

3: for t in epochs do

4: for sentence xl
i with golden parse tree T l

i in the labeled dataset {x, T }l do

5: Stochastically update the parameter Λ in the encoder using Adam while

fixing the decoder.

6: end for

7: Initialize a Counting Buffer B

8: for unlabeled sentence xu
i in the unlabeled dataset {x}u do

9: Compute the posterior Q(T ) in an arc factored manner for xu
i tractably.

10: Compute the expectation of all possible (h(head)→ m(modifier)) occur-

rence in the sentence x based on Q(T ).

11: Update buffer B using the expectation to the power for 1
1−σ of all possible

(h→ m).

12: end for

13: Obtain Θ globally and analytically based on the buffer B and renew the

decoder.

14: end for

and Welling, 2014]. In a significant contrast to that, we argue in this GAP model

the expectation of the latent variable (which is the dependency tree structure) is

analytically tractable by designing a variant of the inside-outside algorithm [Eisner,

1996, Paskin, 2001] in an arc decomposed manner. This can be done by regarding each

directed arc as an indicator variable from a Bernoulli distribution, showing whether

the arc exists or not. We argue that assuming the dependency tree is projective,

specialized belief propagation algorithm exists to compute the marginalization over

all valid dependency trees. This algorithm also computes the expectation of each arc

analytically, making inference tractable. This idea is illustrated in Figure 5.4. We
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show the details of this algorithm in the appendix B.5. We also show how to calculate

the expectation w.r.t the posterior distribution Q(T ) in appendix B.4.

5.6 Experiments

5.6.1 Experimental Settings

Datasets First we compared our models’ performance with strong baselines on the

WSJ dataset, which is the Stanford Dependency conversion [De Marneffe and Man-

ning, 2008] of the Penn Treebank [Marcus et al., 1993]. We used the standard section

split: 2-21 for training, 22 for development and 23 for testing. Second we evaluated

our models on multiple languages, using datasets from UD (Universal Dependency)

2.3 [Mcdonald et al., 2013]. Since semi-supervised learning is particularly useful for

low-resource languages, we believe those languages in UD can benefit from our ap-

proaches. The statistics of the data used in our experiments are described in Table

5.1.

To simulate the low-resource language environment, we used 10% of the whole

training set as the annotated, and the rest 90% as the unlabeled.

Table 5.1.: This table shows statistics of multiple languages we used in our experi-

ments: the numbers of sentences in the training, development and testing set.

Language WSJ Dutch Spanish English French Croatian German Italian Russian Japanese

Training 39832 12269 14187 2914 14450 6983 13814 13121 3850 7133

Development 1700 718 1400 707 1476 849 799 564 579 511

Testing 2416 596 426 769 416 1057 977 482 601 551

Input Representation and Architecture Since we use the same neural architecture

in all of our models, we specify the details of the architecture once, as follows: The

internal word embeddings have dimension 100 and the POS embeddings have dimen-

sion 25. The hidden layer of the bi-LSTM layer is of dimension 125. The nonlinear
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Table 5.2.: In this table we compare different models on multiple languages from UD.

Models were trained in a fully supervised fashion with labeled data only (noted as

“L”) or semi-supervised (notes as “L+U”). “ST” stands for self-training.

Model Dutch Spanish English French Croation German Italian Russian Japanese

NMP (L) 76.11 82.00 75.51 83.07 77.44 74.07 82.85 75.18 93.46

NTP (L) 76.20 82.09 75.57 83.12 77.51 74.13 82.99 75.23 93.54

LAP (L) 76.15 81.93 75.36 83.09 77.45 74.14 83.07 74.84 93.38

GAP (L) 76.23 81.97 75.75 83.11 77.49 74.16 83.14 75.17 93.52

CRFAE (L+U) 71.32 74.67 68.52 77.35 69.89 68.44 76.37 68.64 87.26

ST (L+U) 75.37 80.86 72.76 81.38 76.10 73.45 82.74 72.57 91.43

LAP (L+U) 76.29 82.48 75.48 83.23 77.78 74.48 83.34 75.22 93.65

GAP (L+U) 76.54 82.56 76.21 83.26 77.83 74.63 83.54 75.69 93.92

layers used to form the head and the modifier representation both have 100 dimen-

sion. For LAP, we use separate bi-LSTMs for words and POSs. In GAP, using the

“POS generating POS” decoder yields the best performance comparing with other de-

coder designs. This echos the finding that complicated decoders may cause “posterior

collapse” [van den Oord et al., 2017, Kim et al., 2018].

Training In the training phase, we use Adam [Kingma and Ba, 2014] to learn all the

parameters in both LAP and GAP, except the parameters in the decoder in GAP,

which are learned using their global optima in each epoch. In GAP, We annealed σ

from 1 to 0.3. We did not take efforts to tune models’ hyper-parameters and they

remained the same across all the experiments. To preventing over-fitting, we applied

the “early stop” strategy by using the development set.

5.6.2 Semi-Supervised Dependency Parsing on WSJ Dataset

We first evaluate our models on the WSJ dataset and compared the model per-

formance with other semi-supervised parsing models, including CRFAE [Cai et al.,
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2017], which is originally designed for dependency grammar induction but can be

adopted for semi-supervised parsing, and “differentiable Perturb-and-Parse” parser

(DPPP) [Corro and Titov, 2018]. To contextualize the results, we also experiment

with the supervised neural margin-based parser (NMP) [Kiperwasser and Goldberg,

2016], neural tree-CRF parser (NTP) and the supervised version of LAP and GAP,

with only the labeled data. To ensure a fair comparison, our experimental set up on

the WSJ is identical as that in DPPP, using the same 100 dimension skip-gram word

embeddings employed in an earlier transition-based system [Dyer et al., 2015]. We

show our experimental results in Table 5.3.

Table 5.3.: This table compares the model performance on the WSJ dataset with

10% labeled data. “L” means only 10% labeled data is used, while “L+U” means

both 10% labeled and 90% unlabeled data are used.

Model UAS

DPPP[Corro and Titov, 2018](L) 88.79

DPPP[Corro and Titov, 2018](L+U) 89.50

CRFAE[Cai et al., 2017](L+U) 82.34

NMP[Kiperwasser and Goldberg, 2016](L) 89.64

NTP (L) 89.63

Self-training (L+U) 87.81

LAP (L) 89.37

LAP (L+U) 89.49

GAP (L) 89.65

GAP (L+U) 89.96

As shown in this table, both of our LAP and GAP model are able to utilize the

unlabeled data to improve the overall performance on with only using labeled data.

Our LAP model performs slightly worse than the NMP model, which we attribute

to the increased model complexity by incorporating extra encoder and decoders to

deal with the latent variable. However, our LAP model achieved comparable results
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on semi-supervised parsing as the DPPP model, while our LAP model is simple and

straightforward without additional inference procedure. Instead, the DPPP model

has to sample from the posterior of the structure by using a “GUMBEL-MAX trick”

to approximate the categorical distribution at each step, which is intensively compu-

tationally expensive. Further, our GAP model achieved the best results among all

these methods, by successfully leveraging the the unlabeled data in an appropriate

manner. We owe this success to such a fact: GAP is able to calculate the exact

expectation of the arc-decomposed latent variable, the dependency tree structure, in

the ELBO for the complete data likelihood when the data is unlabeled, rather than

using Monte Carlo sampling to approximate the true expectation. Self-training using

NMP with both labeled and unlabeled data is also included as a base-line, where the

performance is deteriorated without appropriately using the unlabeled data.

5.6.3 Semi-supervised Dependency Parsing on the UD Dataset

We also evaluated our models on multiple languages from the UD data and com-

pared the model performance with the semi-supervised version of CRFAE and the

fully supervised NMP and NTP. To fully simulate the low-resource scenario, we did

not use any external word embeddings while initilized them randomly.

We summarize the results in Table 5.2. First, when using labeled data only, LAP

and GAP have similar performance as NMP and NTP. Second, we note that our LAP

and GAP models do benefit from the unlabeled data, compared to using labeled data

only. Both our LAP and GAP model are able to exploit the hidden information in the

unlabeled data to improve the performance. Comparing between LAP and GAP, we

notice GAP in general has better performance than LAP, and can better leverage the

information in the unlabeled data to boost the performance. These results validate

that GAP is especially useful for low-resource languages that are difficult to annotate.

We also experimented using self-training on the labeled and unlabeled data with the
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NMP model. As results show, self-training deteriorate the performance especially

when the size of the training data is small.

5.7 Comparison of Complexity

We briefly compare the complexity of LAP, GAP and their competitors in Table

5.4. As can be seen, though all the algorithms are of O(l3) complexity, the constant

differs significantly. Our LAP model is 6 times faster than the DPPP algorithm while

our GAP model is 2 times faster. Considering the model performance, our models

are favored.

Table 5.4.: This table compares the complexity of different models in this table, in

which l is the length of the sentence.

Model Complexity (Train) Complexity (Eval)

DPPP 24l3 4l3

CRFAE 12l3 4l3

NMP∗ 4l3 4l3

NTP 4l3 4l3

LAP 4l3 4l3

GAP 12l3 4l3

5.8 Conclusion

In this chapter, we present two semi-supervised parsers, which are locally au-

toencoding parser (LAP) and globally autoencoding parser (GAP). Both of them are

end-to-end learning systems enhanced with neural architecture, capable of utilizing

the latent information within the unlabeled data together with labeled data to im-

prove the parsing performance, without using external resources. More importantly,

our GAP model outperforms the previous published [Corro and Titov, 2018] semi-
∗Although it is the same as NTP and LAP, in fact the max operation is faster than the sum operation.
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supervised parsing system on the WSJ dataset. We attribute this success to two

reasons: First, our GAP model consists both a discriminative component and a gen-

erative component. These two components are constraining and supplementing each

other such that the final parsing choices are made under the checks and balances to

avoid over-fitting. Second, instead of sampling from posterior of the latent variable

(the dependency tree) [Corro and Titov, 2018], our model analytically computes the

expectation and marginalization of the latent variable, such that the global optima

can be found for the decoder, which leads to an improved performance.
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6 CONCLUSIONS

6.1 Summary

Structured prediction aims to predict multiple outputs with inner coherence as

structured objects given the input. Structured prediction prevails in NLP as natu-

ral languages are complex structured cognitive representation developed through the

evolution and interaction of the human brain and the human civilization to carry and

communicate information. Structured prediction have been used in many NLP tasks,

including but not limited to chunking, POS tagging, named entity recognition, con-

stituent parsing, dependency parsing, semantic role labeling, co-reference resolution

and so on, most of which are syntactic processing or shallow semantic processing.

Machine learning offers a potentially powerful approach to automatically annotate

corpora through computer algorithms, but the common supervised method requires

large amount of annotated training data. The manual annotation process demands

annotators with linguistic expertise or domain knowledge, but still can be intensively

laborious and error-prone since the annotation task is of heavy cognitive load. This

difficulty motivates researchers to look for methods with reduced supervision.

The common existing approaches to structured prediction in NLP with reduced

supervision can be mostly divided into three categories. The first are multi-task

and modular approaches trying to aggregate auxiliary tasks either at the top output

level or at the bottom input level to constrain the model towards the right direction.

The second approaches are sequence learning with latent variables, which assume

the chain structure of the output and try to deal with unknown output as latent

variables through different manners during learning. The third approaches are the

tree induction with latent variables, which relax the structure to DAGs and treat

unseen edges as latent variables to learn the probabilities of a prefixed grammar set.
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In this dissertation we have focused on structured prediction in NLP with reduced

supervision, particularly under two scenarios: sequence labeling and dependency pars-

ing. These two types of structured prediction problems are typical representatives of

the complicated real NLP applications. We have presented three novel approaches to

tackle these problems.

6.2 Contributions

We summarize our contributions of this dissertation as follows:

• We identified and categorized the common existing approaches to structured

predictions with reduce supervision in NLP, and discussed the relations among

these methods. Particularly, we pointed out that learning with latent variables

approaches are more general than multi-task and modular approaches since they

can deal with unlabeled data. While the tree induction with latent variable

approaches are more general than sequence learning with latent variables as

they are able to handle more complicated structures in NLP.

• We suggested a general modular framework for sequence learning tasks, partic-

ularly, sentiment tagging and NER but extendable to other sequence labeling

tasks such as chunking and SRL. This framework is a novel weakly super-

vised learning approach–learning with partial labels, which exploits the mod-

ular structure with label decomposition to reduce the supervision effort. We

evaluated our proposed model, in both the fully-supervised and weakly super-

vised scenarios, on several benchmark datasets and show our approach not only

outperforms previous supervised models but with partially labeled data, also

improves on the performance using the fully labeled data alone.

• We proposed the NCRFAE model together with the development of a varia-

tion of the Expectation-Maximization (EM) algorithm used for optimizing the

discriminative component and the generative component of our model simul-
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taneously. This model has a unified architecture with shared parameters, ac-

commodating both unlabeled and labeled data during training. Our empirical

experiments on the well-known POS tagging problem in several different lan-

guages, including low resource languages, show that NCRFAE outperforms the

highly optimized competitors in both the supervised and the semi-supervised

setup, and is able to utilize unlabeled data to improve on the performance using

the labeled data alone.

• We introduced two autoencoding parsers for semi-supervised dependency pars-

ing, namely, LAP and GAP with complementary strengths, trading off speed vs.

accuracy. LAP treats the representation of the sentence as the latent variable

while GAP treats the dependency tree structure itself as the latent variable. In

addition, we identified a tractable inference algorithm to compute the expecta-

tion of the latent dependency tree analytically for GAP, thus a tighter ELBO

can be optimized. Our experiments show improved performance of both LAP

and GAP with unlabeled data on the WSJ and the UD datasets, and GAP

outperforms existing competitors.

6.3 Future Work

Based on the discussion in this dissertation, we point out several interesting pos-

sible directions for future research directions.

• In Chapter 3 we proposed a modular framework with task decomposition for

learning with reduced supervision and run experiments on domain adaptation.

We have shown that it is possible to reuse modules in a similar task. In the

context of meta learning, it is naturally to conjecture the possibility of using the

learning parameters, or the distribution of them, of one task as the initialization

of another task.
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• In Chapter 4 we built our NCRFAE model by using a discriminative component

as the encoder and a generative component as the decoder. For the generative

component, it is possible to add some sort of prior distribution to inject induc-

tive bias to help learning. A choice here is to use Dirichlet prior or modified

Dirichlet prior [Tu, 2016] to induce the desired sparsity property of the grammar

probabilities in the decoder.

• Posterior regularization can help constrain the direction towards which the

model is converged to. In both Chapter 4 and Chapter 5 we did not explicitly

apply any additional regularization on the model. It is possible to employ pos-

terior regularization [Ganchev et al., 2010] to improve the model performance.

• With the surge of DNN in recent machine learning, traditional Bayesian statis-

tics approaches are no more as popular as before, especially due to its unscal-

ability. However, recent advances in Bayesian neural networks have started

to connect these two methods by bringing the strengths of both. With SGLD

[Welling and Teh, 2011] and its variant [Chen et al., 2014] SGHMC, which both

are stochastic gradient MCMC based algorithms, Bayesian neural networks can

be computed under a scalable framework with asymptotic convergence guaran-

tee. A recent study on image recognition shows that by using a proper prior

with a suitable empirical Bayesian algorithm, not only the model achieves state-

of-the-art performance, but also the uncertainty can be well quantified [Deng

et al., 2019]. It is possible to introduce this approach into the structured predic-

tion in NLP with latent variables, and a well-designed prior can carry inductive

bias to guide the model to learn the desirable language properties.

• Another approach we did not discuss in this dissertation is incremental learning.

Active learning can be categorized into this approach, which gradually pick up

examples for annotators to label but not the whole corpus. A recent study

combining active learning with deep neural networks has shown to be effective

for sequence labeling [Yanyao Shen et al., 2018]. It is even possible to combine
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this approach with Bayesian statistics since Bayesian methods are known to

be good at quantifying uncertainty and the quantified uncertainty is extremely

useful in active learning.

• In Chapter 5 we described the method under the framework of projective pars-

ing, which assumes no crossing edges exit in the dependency tree. However,

some languages are known to be convoluted with non-projectivity, e.g., Ara-

bic, Czech, Danish, Dutch and so on. Kirchhoff’s Matrix-Tree Theorem [Tutte,

1984] sheds light on marginalizing all the possible dependency trees (including

both projective and non-projective) in polynomial time. A possible direction

is to extend our research into the scenario of non-projective parsing for better

generalization.

• Another important syntactic tree is the constituent tree, which consists of ter-

minal and non-terminals. PCFG is the grammar usually used in constituent

tree constructions. DNN as effective feature extractors, can also take into ac-

count the contextual information. This breaks the context-free constraint and

brings additional expressivity. It is possible to extend our research in Chapter

5 to constituent grammars with necessary modification and adjustment.

• In this dissertation we focus on structured prediction with reduced supervision

in NLP. Considering the wide applications of structured prediction, it is possible

to extend our approaches to other types of data, e.g., DNA/RNA sequence data,

speech data and image data. These data have different characteristics than

natural language data thus additional procedures or modifications are required

for adaptation.
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A ADDITIONAL EXPERIMENTAL RESULTS FOR THE MODULAR

NEURAL ARCHITECTURE

A.1 Examples of Task Decomposition

In Figure A.1, we show an example of task decomposition for standard NER.

Text Brush Wellman .

Tag B-ORG I-ORG O O O O O

comments on beryllium lawsuits

Seg B I O O O O O

Ent ORG ORG O O O O O

Figure A.1.: This figure shows an example of NER decomposition.

In Figure A.2, we show another example of task decomposition for targeted sen-

timent, in addition to the one in the main text.

Text KCConcepcion Get

Tag B-pos O O

Rogue Magazine Photos Continue to

Seg

Senti

Praised

B-pos B-neu E-neu S-neuO

B O OE B E SO

by Fans onTwitter

O O O O O

O O O O O

pos O Opos neu neu neuO O O O O O

Figure A.2.: This figure illustrates an extra example of target sentiment decomposi-

tion.
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A.2 Full Experimental Results on Targeted Sentiment

The complete results of our experiments on the targeted sentiment task are sum-

marized in Tab. A.1. Our LSTM-CRF-TI(g) model outperforms all the other com-

peting models in Precision, Recall and the F1 score.

Table A.1.: This table compares the performance on the targeted sentiment task

System Architecture
English Spanish

Pre Rec F1 Pre Rec F1

Zhang, Zhang and Vo (2015)

Pipeline 43.71 37.12 40.06 45.99 40.57 43.04

Joint 44.62 35.84 39.67 46.67 39.99 43.02

Collapsed 46.32 32.84 38.36 47.69 34.53 40.00

Li and Lu (2017)

SS 44.57 36.48 40.11 46.06 39.89 42.75

+embeddings 47.30 40.36 43.55 47.14 41.48 44.13

+POS tags 45.96 39.04 42.21 45.92 40.25 42.89

+semiMarkov 44.49 37.93 40.94 44.12 40.34 42.14

Base Line LSTM-CRF 53.29 46.90 49.89 51.17 46.71 48.84

This work

LSTM-CRF-T 54.21 48.77 51.34 51.77 47.37 49.47

LSTM-CRF-Ti 54.58 49.01 51.64 52.14 47.56 49.74

LSTM-CRF-Ti(g) 55.31 49.36 52.15 52.82 48.41 50.50

A.3 Experiments on NER

NER datasets We evaluated our models on three NER datasets, i.e., the English,

Dutch and Spanish parts of the 2002 and 2003 CoNLL shared tasks [Sang and F.,

2002, Sang et al., 2003]. We used the original division of training, validation and test

sets. The task is defined over four different entity types: PERSON, LOCATION, OR-

GANIZATION, MISC. We used the BIOES tagging scheme during the training, and

convert them back to original tagging scheme in testing, as the previous studies show

that using this tagging scheme instead of BIO2 can help improve performance [Rati-

nov and Roth, 2009, Lample et al., 2016, Ma and Hovy, 2016, Liu et al., 2018]. As
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a result, the segmentation module has 5 output labels, and the entity module has 4.

The final decision task, consisted of the Cartesian product of the segmentation set

(BIES) and the entity set, plus the “O” tag, resulting in 17 labels totally.

Results on NER We compared our models with the state-of-the-art systems on En-

glish∗, Dutch and Spanish. For Dutch and Spanish, we used cross-lingual embedding

as a way to exploit lexical information. The results are shown in Tab. A.2 and Tab.

A.3. Our best-performing model outperforms all the competing systems.

Table A.2.: This table compares our models with several state-of-the-art systems on

the CoNLL 2003 English NER dataset.

Model English

LSTM-CRF [Lample et al., 2016] 90.94

LSTM-CNN-CRF [Ma and Hovy, 2016] 91.21

LM-LSTM-CRF [Liu et al., 2018] 91.06

LSTM-CRF-T 90.8

LSTM-CRF-TI 91.16

LSTM-CRF-TI(g) 91.68

A.4 Additional Experiments on Knowledge Integration

We conducted additional experiments on knowledge integration in the same setting

as in the main text to investigate the properties of the modules. Figure A.3 shows

the results for Dutch and Spanish NER datasets, while Figure A.4 shows the results

for the Subjective Polarity Disambiguation Datasets using the in-domain data.
∗[Liu et al., 2018]’s results are different since their implementation did not convert the predicted
BIOES tags back to BIO2 during evaluation. For fair comparison, we only report the results of the
standard evaluation.
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Table A.3.: This table compares our models with recent results on the 2002 CoNLL

Dutch and Spanish NER datasets.

Model Dutch Spanish

[Carreras et al., 2002] 77.05 81.39

[Nothman et al., 2013] 78.60 N/A

[dos Santos and Guimarães, 2015] N/A 82.21

[Gillick et al., 2015] 82.84 82.95

[Lample et al., 2016] 81.74 85.75

LSTM-CRF-T 83.91 84.89

LSTM-CRF-TI 84.12 85.28

LSTM-CRF-TI(g) 84.51 85.92

55

61.25

67.5

73.75

80

20% 40% 60% 80% 100%

Modularized
non-Modularized

(a) Dutch NER

55

61.25

67.5

73.75

80

20% 40% 60% 80% 100%

Modularized
non-Modularized

(b) Spanish NER

Figure A.3.: This figure shows experimental results on modular knowledge integration

on the Dutch and Spanish NER datasets.

A.5 Convergence Analysis

The proposed twofold modular infusion model (with guided gating as an option)

breaks the complex learning problem into several sub-problems and then integrate
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10

17.5

25

32.5

40

20% 40% 60% 80% 100%

Modularized
non-Modularized

Figure A.4.: This figure shows experimental results on modular knowledge integration

on the Subjective Polarity Disambiguation datasets.

them using joint training. The process defined by this formulation has more pa-

rameters and requires learning multiple objectives jointly. Our convergence analysis

intends to evaluate whether the added complexity leads to a harder learning problem

(i.e., slower to converge) or whether the tasks constrain each other and as a result

can be efficiently learned.

We compare between our LSTM-CRF-TI(g) model and recent published top mod-

els on the English NER dataset in Figure A.5 and on the subjective polarity disam-

biguation datasets in Figure A.6. The curve compares convergence speed in terms of

learning epochs. Our LSTM-CRF-TI(g) model has a much faster convergence rate

compared to the other models.
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CNN-LSTM-CRF
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LSTM-CRF-Ti(g)

Figure A.5.: This figure compares the convergence over the development set on the

English NER dataset. The x-axis is number of epochs and the y-axis is the F1-score.

0
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12.5

18.75

25

1 2 3 4 5 6 7 8 9 10 11 12

LSTM-CRF
CNN-LSTM-CRF
LM-LSTM-CRF
LSTM-CRF-Ti(g)

Figure A.6.: This figure compares the convergence over the development set on the

subjective polarity disambiguation datasets. The x-axis is number of epochs and the

y-axis is the F1-score.
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B SUPPLEMENTARY MATERIALS FOR LAP AND GAP

B.1 ELBO of LAP’s Original Ojective

Lemma B.1.1 Jlap is the ELBO (evidence lower bound) of the original objective J ,

with an input sequence x.

Denote the encoder Q is a distribution used to approximate the true posterior distri-

bution Pϕ(z|x), parameterized by ϕ such that Q encoding the input into the latent

space z.

Proof

logPθ(x)P
ϵ
ω(T |x) = logPθ(x)︸ ︷︷ ︸

U

+ ϵ logPω(T |x)︸ ︷︷ ︸
L

U = log

∫
z

Qϕ(z|x)
Pθ(x)

Qϕ(z|x)
dz

≥ E
z∼Qϕ(z|x)

[logPθ(x|z)]

− E
z∼Qϕ(z|x)

[
log

Qϕ(z|x)
Pθ(x)

]
= E

z∼Qϕ(z|x)
[logPθ(x|z)]

−KL (Qϕ(z|x)||Pθ(z)) ,

(ELBO of traditional VAE)

L =ϵ logPω(T |x)

=ϵ log

∫
z

Pω(T |z)Qϕ(z|x)dz

=ϵ log E
z∼Qϕ(z|x)

[Pω(T |z)]

≥ϵ E
z∼Qϕ(z|x)

[logPω(T |z)] .
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Combining U and L leads to the fact:

U + L ≥ E
z∼Qϕ(z|x)

[logPθ(x|z)]−KL(Qϕ(z|x)||Pθ(z))

+ϵ E
z∼Qϕ(z|x)

[logPω(T |z)] = Jlap

B.2 Details of the Auxiliary Posterior

B.2.1 Mean Field Approximation and Annealing

Directly calculating the the auxiliary posterior Qϕ(z|x) is difficult due to the

complex model structure with deep neural networks, thus we used a mean field ap-

proximation [Tanaka, 1999] together with the conditional independence assumption

by assuming Qϕ(z|x) =
∏l

t=1Qϕ(zt|xt) to compute it. Similarly, the generative

model Pθ(x|z), acting as a decoder parameterized by θ, tries to regenerate the input

xt at time step t given the latent variable zt, assuming Pθ(x|z) =
∏l

t=1 Pθ(xt|zt).

The encoder and the decoder are trained jointly using the traditional variational au-

toencoder framework, by minimizing the KL divergence between the approximated

posterior and the true posterior.

We parameterize the encoder Qϕ(zt|xt) in two steps: First a bi-LSTM is used to

obtain a non-linear transformation ht of the original xt; then two separate MLPs are

used to compute the mean µzt and the variance σ2
zt . The generative story Pθ(xt|zt)

follows such parameterization: we used a MLP of two hidden layers in-between to

take zt as the input, and predict the word (or POS tag) over the vocabulary, such

that the reconstruction probability can be measured.

Following traditional VAE training paradigms, we also apply the “re-parameterization”

trick [Kingma and Welling, 2014] to circumvent the non-differentiable sampling pro-

cedure to sample zt from the Qϕ(zt|xt). Instead of directly sample from N (µzt ,σ
2
zt),

we form zt = µzt + ϵ ⊙ σ2
zt by sampling ϵ ∼ N (0, I). In addition, to avoid hinder-

ing learning during the initial training phases, following previous works [Chen et al.,
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2018, Bowman et al., 2016], we anneal the temperature on the KL divergence term

from a small value to 1.

B.2.2 Empirical Bayesian Treatment

From an empirical Bayesian perspective, it is beneficial to estimate the prior

distribution directly from the data by treating prior’s parameters part of the model

parameters, rather than fixing the prior using some certain distributions. Similar to

the approach used in the previous study [Chen et al., 2018], LAP also learns the priors

from the data by updating them iteratively. We initialize the priors from a standard

Gaussian distribution N (0, I), where I is an identity matrix. During the training, the

current priors are updated using the last optimized posterior, following the rule:

πk
θ(z) =

∑
x

Qk−1
ϕ (z|x)P (x),

where P (x) represents the empirical data distribution, and k the iteration step. Em-

pirical Bayesian is also named as “maximum marginal likelihood”, such that our

approach here is to marginalize over the missing observation as a random variable.

B.3 Proof of the Convexity of GAP’s ELBO

Since we only care about the term containing Θ, the KL divergence term degen-

erates to a constant. For sentence i, Q(Ti) has been derived in the main text. We

denote 1 as the indication function.
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max
Θ

∑
i

ETi∼Q(Ti) [logPΘ(mi|Ti)]

−KL [Q(Ti)||PΦ(Ti|xi)]

max
Θ

∑
i

∑
Ti∈T(xi)

Q(Ti) logPΘ(mi|Ti) + Const

max
Θ

∑
(h→m)

log θmhE(h→m)∼Q1(h→ m)

max
Θ

∑
(h→m)

Q(1(h→ m)) log θmh, (B.1)

Q(1(h→ m)) is a Bernoulli distribution,

indicating whether the arc (h→ m) exists.

s.t.
∑
m

θmh = 1 ∀h. (B.2)

B.4 Marginalization and Expectation of Latent Parse Trees

Light modification is needed in our study to calculate the expectation w.r.t. the

posterior distribution Q(T ) = PΘ,Φ(T |m,x), as we have

PΘ,Φ(T |m,x) =
PΘ,Φ(T ,m|x)
PΘ,Φ(m|x)

=
exp

∑
(h,m)∈T

s
′
Φ,Θ(h,m)

Z(x)
/
∑
T ∈T

exp

∑
(h,m)∈T

s
′
Φ,Θ(h,m)

Z(x)


=

exp
∑

(h,m)∈T
s
′
Φ,Θ(h,m)

Z ′(x)
,

where Z ′(x) =
∑
T ∈T exp

∑
(h,m)∈T

s
′
Φ,Θ(h,m) is the real marginal we need to calculate

using the transformed scoring matrix S′ as input in the inside algorithm. Each entry

in this transformed scoring matrix is defined in the text as s′Φ,Θ(h,m).
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B.5 Details of the Tractable Algorithm for GAP

Assuming the sentence is of length l, we could obtain an arc decomposed scoring

matrix S of size l × l, with the entry S[i, j]i ̸=j,j ̸=0 stands for the arc score where ith

word is the head and jth word the modifier.

We first describe the inside algorithm to compute the marginalization of all pos-

sible projective trees in Algo. 4.

We then describe the outside algorithm to compute the outside tables in Algo. 5.

In this algorithm,
⊕

stands for the logaddexp operation.

Finally, with the inside table α, outside table β and the marginalization Z of

all possible latent trees, we can compute the expectation of latent tree in an arc-

decomposed manner. Algo. 6 describes the procedure. It results the matrix P

containing the expectation of all individual arcs by marginalize over all other arcs

except itself.
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Algorithm 4 Inside Algorithm
Input: S

Output: α, Z

1: α← −∞

2: for s ∈ 0 . . . l − 1 do

3: if s > 0 then

4: α[s, s, L,C]← 0

5: end if

6: α[s, s, R,C]← 0

7: end for

8: for k ∈ 1 . . . l − 1 do

9: for s ∈ 0 . . . l − k do

10: t = s+ k

11: if s > 0 then

12: α[s, t, L, I]← log
∑

u∈[s,t−1]

exp (α[s, u,R,C] +α[u+ 1, t, L, C]) + S[t, s]

13:
=

14: end if

15: α[s, t, R, I]← log
∑

u∈[s,t−1]

exp (α[s, u,R,C] +α[u+ 1, t, L, C]) + S[s, t]

16:
=

17: if s > 0 then

18: α[s, t, L, C]← log
∑

u∈[s,t−1]

exp (α[s, u, L,C] +α[u, t, L, I])

19:
=

20: end if

21: α[s, t, R,C]← log
∑

u∈[s,t−1]

exp (α[s, u+ 1, R, I] +α[u+ 1, t, R,C])

22:
=

23: end for

24: end for

25: Z ← α[0, l − 1, R, C]
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Algorithm 5 Outside Algorithm
Input: S,α

Output: β

1: β ← −∞

2: β[0, l − 1, R, C]← 0

3: for k ∈ l − 1 . . . 1 do

4: for s ∈ 0 . . . l − k do

5: t = s+ k

6: for u ∈ s . . . t− 1 do

7: β[s, u+ 1, R, I]←
⊕

(β[s, u+ 1, R, I],β[s, t, R,C] +α[u+ 1, t, R,C])

8: =

9: end for

10: for u ∈ s . . . t− 1 do

11: β[u+ 1, t, R,C]←
⊕

(β[u+ 1, t, R,C],β[s, t, R,C] +α[s, u+ 1, R, I])

12: =

13: end for

14: if s > 0 then

15: for u ∈ s . . . t− 1 do

16: β[s, u, L,C]←
⊕

(β[s, u, L,C],β[s, t, L, C] +α[u, t, L, I])

17: =

18: end for

19: for u ∈ s . . . t− 1 do

20: β[u, t, L, I]←
⊕

(β[u, t, L, I],β[s, t, L, C] +α[s, u, L,C])

21: =

22: end for

23: end if

24: for u ∈ s . . . t− 1 do

25: β[s, u,R,C]←
⊕

(β[s, u,R,C],β[s, t, R, I] +α[u+ 1, t, L, C] + S[s, t])

26: =

27: end for

28: for u ∈ s . . . t− 1 do

29: β[u+ 1, t, L, C]←
⊕

(β[u+ 1, t, L, C],β[s, t, R, I] +α[s, u,R,C] + S[s, t])

30: =

31: end for

32: if s > 0 then

33: for u ∈ s . . . t− 1 do

34: β[s, u,R,C]←
⊕

(β[s, u,R,C],β[s, t, L, I] +α[u+ 1, t, L, C] + S[t, s])

35: =

36: end for

37: for u ∈ s . . . t− 1 do

38: β[u+ 1, t, L, C]←
⊕

(β[u+ 1, t, L, C],β[s, t, L, I] +α[s, u,R,C] + S[t, s])

39: =

40: end for

41: end if

42: end for

43: end for
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Algorithm 6 Arc Decomposed Expectation
Input: α,β, Z

Output: P

1: P ← 0

2: for s ∈ 0 . . . l − 2 do

3: for t ∈ s+ 1 . . . l − 1 do

4: if s ̸= t then

5: P [s, t]← exp(α[s, t, R, I] + β[s, t, R, I]− Z)

6:
α

β

7: if s > 0 then

8: P [t, s]← exp(α[s, t, L, I] + β[s, t, L, I]− Z)

9:
α

β

10: end if

11: end if

12: end for

13: end for
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